

We bring innovation to transportation.

INFLUENCE OF CRACKS ON CORROSION INITIATION OF CORROSION RESISTANT REINFORCEMENT

Soundar S. G. Balakumaran, PhD, PE VTRC - Virginia DOT

> Richard E. Weyers, PhD, PE VTRC - Virginia DOT

> Michael C. Brown, PhD, PE

EVALUATION OF BRIDGE DECKS

- Twenty seven bare bridge decks were selected from all exposure zones.
 - w/c or w/cm ratio = 0.45, built between 1984 and 1991 with epoxy coated rebar
 - » 16 decks with PC concrete
 - » 7 decks with GGBFS
 - » 4 decks with fly ash
- Crack survey, damage survey, and core sampling

Zone	Environmental Zone Description	Notation	Salt Usage (kg-Cl-/lane-km)
1	Southwest Mountain	SM	688
2	Central Mountain	CM	671
3	Western Piedmont	WP	220
4	Northern	N	4369
5	Eastern Piedmont	EP	530
6	Tidewater	TW	225

• At time of survey (2003), the decks were in service 12 to 19 years

SURVEY RESULTS

- Damage survey showed almost no damage (< 0.5% spalls, delaminations and patches)
- Crack widths and crack depths were measured to determine if deck cracking influences chloride diffusion rate and the associated influence on corrosion resistant service life
- Coring included companion cores with and without cracks

CRACK SURVEY RESULTS

Subgroups	1984-91 No-SCM	1984-91 SCM
N	16	11
	Longitudinal Crack Frequenc	y (ft/ft²)
Mean	0.163	0.100
Std. Dev.	0.121	0.085
	Transverse Crack Frequency	/ (f†/f†²)
Mean	0.073	0.079
Std. Dev.	0.090	0.055
	Diagonal Crack Frequency	(ft/ft²)
Mean	0.007	0.013
Std. Dev.	0.011	0.038
	Total Crack Frequency (ft	/ft²)
Mean	0.246	0.192
Std. Dev.	0.187	0.093

CONCRETE MATERIAL PROPERTIES

Groups	w/c=0.45 No SCM	w/cm=0.45 SCM		
	Permeability (Could	ombs)		
Mean	4793	1361		
Std. Dev.	2257	817		
Median	5144	1091		
C.V.	47%	60%		
	Pore Space (%)		
Mean	15.3	13.9		
Std. Dev.	3.9	1.2		
Median	14.7	14		
C.V.	25%	9%		
Concrete Saturation (%)				
Mean	68	76		
Std. Dev.	6.9	4.1		
Median	68	75		
C.V.	10.1%	5.4%		

5

COVER DEPTH

itics	Fitted Normal
	Goodness-of-Fit Test
	Shapiro-Wilk W Test
	W Prob <w< th=""></w<>
	0.992711 0.5247
	Note: Ho = The data is from the Normal
	distribution. Small p-values reject Ho.

c) 84-91 SCM Summary Statistics **Fitted Normal** 50 Mean 2.46 Goodness-of-Fit Test 40 Std Dev 0.34 Count Shapiro-Wilk W Test 30 20 N 112 W Prob<W Median 2.4 0.987870 0.4148 Mode 2.4 10 Note: Ho = The data is from the Normal 1.5 2.5 distribution. Small p-values reject Ho. 3.5 1 3 2 Cover Depth (inch)

SURFACE CHLORIDE

DIFFUSION COEFFICIENTS

CRACK INFLUENCE ON CHLORIDE DIFFUSION

NO SCM

Parameter	Hypothesized Value	Actual Estimate = Cracked - Uncracked	Prob. > † Two tail	Prob. > t Right tail	Prob. < t Left tail
CI- at rebar depth (lb/yd³)	0	1.15	<.0001	<.0001	1.000
Diffusion coefficient (in²/yr.)	0	0.17	<.0001	<.0001	1.000
Surface rust area (%)	0	0.08	0.893	0.446	0.554
Moisture saturation (%)	0	2.75	0.009	0.005	0.995

CRACK INFLUENCE ON CHLORIDE DIFFUSION

SCM

Parameter	Hypothesized Value	Actual Estimate = Cracked - Uncracked	Prob. > † Two Tail	Prob. > † Right Tail	Prob. < t Left Tail
CI- at rebar depth (lb/yd ³)	0	2.11	0.000	0.000	1.000
Diffusion coefficient (in²/yr.)	0	0.533	0.000	0.000	1.000
Surface rust area (%)	0	2.62	0.279	0.139	0.861
Moisture saturation (%)	0	8.88	0.000	0.000	1.000

CONCLUSION (1 OF 4)

• Concrete cracking allows significantly higher chloride diffusion compared to uncracked concrete locations.

CRACK WIDTH

AASHTO 7 th Edition	0.017 inch	0.43 mm
Mangat (1987)	0.008 inch	0.2 mm
NCHRP 380 (1996)	As narrow as 0.002 inch	0.05 mm
Xi et al (2003)	0.004 to 0.008 inch	0.1 to 0.2 mm
Ismail et al (2008)	0.002 inch	0.06 mm

CRACK DIMENSIONS VS. CHLORIDE DIFFUSION

THRESHOLD OF CRACK DIMENSIONS

NO SCM

No statistical difference was found between crack width ranges

Statistical difference was found in diffusion coefficients and Chloride at Rebar Depth for the crack depth ranges

14

THRESHOLD OF CRACK DIMENSIONS

SCM

No statistical difference was found between crack width ranges

Statistical difference was found in Chloride at Rebar Depth for the crack depth ranges 15

CRACK WIDTH AND DEPTH CORRELATION

16

CONCLUSION (2 OF 4)

 Surface crack widths do not have a strong correlation with the rate of chloride diffusion; however crack depths exhibited a strong correlation.

BRIDGE DECK DAMAGE CURVE

Time

CORROSION SERVICE LIFE

Time for corrosion initiation

How diffusion causes changes in concentration over time

Fick's Second Law

20

TIME TO CORROSION INITIATION -UNCRACKED CONCRETE & BARE REBAR

Groups	0.45 w/cm No SCM	0.45 w/cm SCM
	Uncracked (years)	Uncracked (years)
Time for corrosion initiation (0% to 2% Deck Damage)	8	28

DIFFUSION CLASSIFICATION

Cracked/ Uncracked	Crack Frequency	Diffusion at Cracks	Crack Influenced Deck Area and Number of Data 0.45 w/cm No-SCM 0.45 w/cm SCM (years) (years)		mber of Data n SCM (years)	
			Freq, #	D _c in²/yr	Freq, #	D _c in²/yr
		Low Diffusion		0.033 – 0.037		0.009 - 0.023
Cracked	LOW Frequency	Median Diffusion	3%, 4	0.110 – 0.136	3%, 3	0.081 – 0.095
	riequeriey	High Diffusion		0.386 – 1.297		1.748 – 2.651
		Low Diffusion		0.033 – 0.078		0.009 – 0.025
Cracked	Median Frequency	Median Diffusion	9%, 14	0.084 – 0.172	7%, 6	0.050 – 0.119
	10900109	High Diffusion		0.202 – 1.297		0.450 – 2.651
		Low Diffusion		0.033 – 0.386		0.009 – 0.059)
Cracked	Hign Frequency	Median Diffusion	25%, 46	0.036 – 0.428	15%, 14	0.031 – 0.202
		High Diffusion		0.037 – 1.297		0.126 – 2.651
Uncracked			137	0.0015 - 0.741	80	0.0015 – 0.897

TIME TO CORROSION INITIATION – CRACKED CONCRETE & BARE REBAR

Degree of Crack Frequencies	Category	84-91, 0.45 w/c, no SCM	84-91, 0.45 w/c, SCM
Uncracked	Uncracked	8	28
	Low Diffusion	8	28
Low Frequency	Median Diffusion	8	19
	High Diffusion	6	4
	Low Diffusion	8	28
Median Frequency	Median Diffusion	7	16
	High Diffusion	5	3
	Low Diffusion	6	23
High Frequency	Median Diffusion	6	11
	High Diffusion	5	3

A Triangular distribution with a minimum of 0.39, mode of 1.40, and a maximum of 6.26 lb/yd³ was used as chloride threshold for corrosion initiation for bare rebar.

CONCLUSION (3 OF 4)

• Service life of bridge decks built with relatively less permeable concrete with supplementary cementitious materials was affected significantly, while the older mix design with plain OPC was not sensitive to the presence of cracks.

VDOT SPECIFICATIONS CORROSION RESISTANT REINFORCING STEEL

• Class I shall conform to ASTM A1035/A1035M

Class II shall conform to AASHTO Designation: MP
 13M/MP 13-04

• Class III shall conform to ASTM A955/A955M

CHLORIDE THRESHOLD FOR CRR

- ASTM A1035 Rebar:
 - Gerardo Clemeña (2003) reported 4.6 6.4 times bare rebar
 - David Darwin (2009) reported 4 times bare rebar
 - David Trejo (2004) reported 7.7 lb/yd³ as opposed to 0.9
 lb/yd³
- ASTM A955 Rebar:
 - Gerardo Clemeña (2003) reported 10.4 times bare rebar

TIME TO CORROSION INITIATION – CRR

Degree of Crack Frequencies	Category	A1035 Rebar (years)	A955 Steel (years)
Uncracked	Uncracked	150+	150+
	Low Diffusion	150+	150+
Low Frequency	Median Diffusion	150+	150+
	High Diffusion	100+	150+
	Low Diffusion	150+	150+
Median Frequency	Median Diffusion	100+	150+
	High Diffusion	56	150+
	Low Diffusion	100+	150+
High Frequency	Median Diffusion	64	150+
	High Diffusion	30	150+

CONCLUSION (4 OF 4)

• VDOT's recently used concrete mix with corrosion resistant reinforcement, A1035 (MMFX-2) and A955 (Stainless Steel) was considerably durable compared to the bare steel.

LIST OF CONCLUSIONS

- Concrete cracking allows significantly higher chloride diffusion compared to uncracked concrete locations.
- Surface crack widths do not have a strong correlation with the rate of chloride diffusion; however crack depths exhibited a strong correlation.
- Service life of bridge decks built with relatively less permeable concrete with supplementary cementitious materials was affected significantly, while the older mix design with plain OPC was not sensitive to the presence of cracks.
- VDOT's recently used concrete mix with corrosion resistant reinforcement, A1035 (MMFX-2) and A955 (Stainless Steel) was considerably durable compared to the bare steel.

Thank you

We Bring Innovation to Transportation

Linear Cracking in Bridge Decks

http://www.virginiadot.org/vtrc/main/online_reports/pdf/18-r13.pdf

SOUNDAR S.G. BALAKUMARAN, Ph.D., P.E. Research Scientist Virginia Transportation Research Council

RICHARD E. WEYERS, Ph.D., P.E. Professor Emeritus Virginia Polytechnic Institute and State University

MICHAEL C. BROWN, Ph.D., P.E. Senior Supervising Engineer WSP

Final Report VTRC 18-R13

VIRGINIA TRANSPORTATION RESEARCH COUNCIL 530 Edgemont Road, Charlottesville, VA 22903-2454 vtrc.virginiadot.org