A Chemical Admixture with Carbon Nanotubes

Yuan Gao¹ David J. Corr² Maria S. Konsta-Ddoutos³ Surendra P. Shah⁴

ACI Spring Convention, Salt Lake City, 2018

- 1. PhD Candidate, Civil Engineering Department, Northwestern University
- 2. Professor, Civil Engineering Department, Northwestern University
- 3. Professor, Civil Engineering Department, Democritus University of Thrace
- 4. Professor(Emeritus), Civil Engineering Department, Northwestern University

Content

- Background
- Effect of CNT in cement composites
 - Mechanical properties
 - Autogenous shrinkage, shrinkage cracking
 - Reinforcement corrosion
- Processing of CNT suspension
 - Dispersion
 - Characterization
 - Chemical admixture
 - Conclusions

Content

- Background
- Effect of CNT in cement composites
 - Mechanical properties
 - Autogenous shrinkage, shrinkage cracking
 - Reinforcement corrosion
- Processing of CNT suspension
 - Dispersion
 - Characterization
 - Chemical admixture
 - Conclusions

Background

Carbon nanotube/nanofiber

- Young's Modulus: 0.6-1 TPa
- Tensile Strength: ~100 GPa

Multiwall Carbon Nanotube

TEM of Carbon Nanofiber

Ozkan T, Naraghi M, Chasiotis I. Mechanical properties of vapor grown carbon nanofibers. Carbon 2010;48:239–44.
Mordlkovich VZ. Carbon nanofibers: a new ultrahigh-strength material for chemical technology. Theor Found Chem Eng 2003;37(5):429–38.

Challenge of Using CNTs/CNFs

Content

- Background
- Effect of CNT in cement composites
 - Mechanical properties
 - Autogenous shrinkage, shrinkage cracking
 - Reinforcement corrosion
- Processing of CNT suspension
 - Dispersion
 - Characterization
 - Chemical admixture
 - Conclusions

Mechanical Properties

Flexural Test

2x2x8 cm

Compression Test

10x20 cm

Flexural Test

Flexural Test

Mortar

(w/c/s=0.485:1:2.75)

Compression Test

Concrete

(w/c/s/a.g=0.51:1:2.46:3.5)

Mechanical Properties Improvement

SEM/EDS on Interface

SEM/EDS on Interface

Jeddah Tower (Jeddah)

Mechanical Properties Improvement

Mechanical Properties Improvement

Autogenous Shrinkage Measurement

Autogenous Shrinkage of High Performance Mortar with or without CNF

w:c:s=0.34:1:1.75

Shrinkage Cracking

Reinforcement Corrosion

Half Cell Potential (mV)	Corrosion Probability
0-200	No corrosion
200-350	Possible corrosion
350-500	Corrosion
>500	Strongly Corroded

Reinforcement Corrosion

0.1 wt% CNTs could increase the resistance to corrosion

Northwestern

M.S. Konsta-Gdoutos, G. Batis, P.A. Danoglidis, A. K. Zacharopoulou, E. K. Zacharopoulou, M.G. Falara, S.P. Shah, Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars, 2017. doi:10.1016/j.conbuildmat.2017.04.112.

Content

- Background
- Effect of CNT in cement composites
 - Mechanical properties
 - Autogenous shrinkage, shrinkage cracking
 - Reinforcement corrosion
- Processing of CNT suspension
 - Dispersion
 - Characterization
 - Chemical admixture

Conclusions

Processing of CNT Suspension

Poor Dispersion

Good Dispersion

Existing Dispersion Methods

The chemical approach

- Non-covalent methods
- Covalent methods

The mechanical approach

- Ultra-sonication
- High shear mixing

The Chemical Approach

covalent functionalization

noncovalent functionalization

polymer wrapping

surfactant attaching

The Mechanical Approach

Ultra-sonication Probe

Shear Mixing

Dispersion Characterization

Figure 1. Schematic of Ultraviolet-visible Spectroscopy

Figure 2. Typical absorption curve for CNTs¹

1. Linqin Jiang, Lian Gao, Jing Sun, "Production of aqueous colloidal dispersions of carbon nanotubes," *Journal of Colloid and Interface Science*, Volume 260, Issue 1, 2003, Pages 89-94,

Characterization

Ultraviolet Visible Spectroscopy (UV-Vis)

Dispersion

A combination of the use of superplasticizer and ultrasonication

S.P. Shah, M.S. Konsta-Gdoutos, Z.S. Metaxa (2016), Highly-dispersed carbon nanotube-reinforced cement-based materials, US9499439B2

Processing of CNT Suspension

Chemical Admixture

- Small dosages of CNTs (0.08-0.15 wt%)
- Nano modification of the hydration products

Conclusions

- CNTs significantly improve the mechanical properties, such as flexural strength, Young's modulus
- CNTs reduce autogenous shrinkage and shrinkage cracking
- CNTs increase the resistance to reinforcement corrosion
- Good dispersion has been obtained in lab scale
- Dispersion needs to be scaled up for industry application

Thanks!

Thanks!