

CFRP Retrofit of Concrete Columns

Alan Lloyd University of New Brunswick

American Concrete Institute

Overview

- Shock tube testing of concrete columns
- Response of columns with and without seismic detailing
- Retrofit of columns with FRP for ductility and for strength

Always advancing

• FRP bond under high strain rates

American Concrete Institute

Shock Tube Testing Facility

Explosive Simulation

American Concrete Institute

Shock Waves

Properties

- Instantaneous rise to maximum
- Exponential decay
- Short duration

American Concrete Institute

Shock Tube Induced Shock Waves

Pressure vs Time

- Near instantaneous rise time
- Exponential decay over very short duration

Load Transferring Device

Converting Pressure to Load

- Collect pressure
- Transfer to column as a UDL
- Increase mass of system
- Increase tributary loaded area
- Reduce venting and 'wrap around'

American Concrete Institute

Group 2 Columns – Non-Seismic Detailing

- Control Column 2-NS-C
- CFRP Jacketed Column 2-NS-J
- Longitudinal CFRP Column 2-NS-R
- Longitudinal and Jacketed CFRP 2-NS-JR

Always advancing

American Concrete Institute

Group 2 Columns – Seismic Detailing

- Control Column 2-S-C
- CFRP Jacketed Column 2-S-J
- Longitudinal CFRP Column 2-S-R
- Longitudinal and Jacketed CFRP 2-S-JR

American Concrete Institute

Details of Columns Tested

Group	Name	Cross Section Width	Cross Section Height	Longitudinal Reinforcement Ratio	Spacing of Transverse Reinforcement	f'c	Fy	P/P _o	Retrofit Details
		mm	mm	%	mm	MPa	MPa	%	
	1-NS-C	150	100	2.67	50	58	483	35.6	÷
1	1-S-C	150	100	2.67	25	58	483	35.6	-
'	1-NS-J	150	100	2.67	50	56.2	483	36.7	FRP Jacket
	1-S-J	150	100	2.67	25	56.2	483	36.7	FRP Jacket
	2-NS-C	150	150	1.78	75	69.6	483	25.1	-
	2-S-C	150	150	1.78	37.5	69.6	483	25.1	-
	2-NS-J	150	150	1.78	75	69.6	483	25.1	FRP Jacket
	2-S-J	150	150	1.78	37.5	69.6	483	25.1	FRP Jacket
2	2-NS-R	150	150	1.78	75	69.6	483	25.1	FRP Reinforcement
	2-S-R	150	150	1.78	37.5	69.6	483	25.1	FRP Reinforcement
	2-NS-JR	150	150	1.78	75	69.6	483	25.1	FRP Jacket and Reinforcement
	2-S-JR	150	150	1.78	37.5	69.6	483	25.1	FRP Jacket and Reinforcement
	3-NS-C	150	150	1.78	75	49.5	497	31.3	
	3-NS-W	150	150	1.78	150	49.5	497	34.7	Prestressed Steel Jacket
	3-NS-CB	150	150	1.78	75	49.5	497	34.7	Compression Brace
3	3-NS-TB1	150	150	1.78	75	49.5	497	34.7	Tension Brace
	3-NS-TB2	150	150	1.78	75	49.5	497	34.7	Tension Brace
	3-NS-TB3	150	150	1.78	75	49.5	497	11.6	Tension Brace

American Concrete Institute

Control Columns

American Concrete Institute

Control Columns

- Similar response in elastic tests
- Bar buckling prevention with seismic detailing
- Minimal core concrete loss with seismic

American Concrete Institute

FRP Jacketed Columns

American Concrete Institute

Jacketed Columns High Pressure Test

- Buckling and concrete compression failure prevented
- Failure due to rebar rupture

American Concrete Institute

Maximum Displacement of Jacketed Columns

- No real change in elastic response
- Moderate reduction in maximum displacement for high damage

American Concrete Institute

Longitudinal FRP Reinforced Columns

- Brittle failure mode of FRP debonding
- Post-debond damage to columns similar to control columns

Longitudinal and Jacketed FRP Columns

- Limited deflection
- Bar buckling and concrete compression failure prevented
- Longitudinal FRP rupture

Summary of FRP Performance

- The combination of longitudinal strengthening and FRP jacketing showed the best performance
- However, this is not the end of the story

American Concrete Institute

A Canadian Blast Retrofit Perspective

Design and assessment of buildings subjected to blast loads

Design and construction of building structures with fibre-reinforced polymers

S850-12

The use of FRP to retrofit reinforced concrete columns in Canada

S806-12

American Concrete Institute

Standard Levels of Protection (LOP)

- LOPs are selected based on design objectives
- LOPs are achieved by limiting member response

Table 4.1LOP damage description for building elements(See Clauses 4.3.3, 4.3.4, 4.4.1.1, and A.4.5)

LOP	Building	Building component damage levels								
	perform- ance (Clause 4.4.2)	Compo	onents (Clause	Glazing* (Clause 4.4.4.2)	Doors [†] (Clause 4.4.4.3)					
		Primary structural	Secondary Non- structural structural‡							
Very Low (VL)	Collapse prevention	Heavy	Haza	rdous	Low hazard rating	Failure				
Low (L)	Life safety	Moderate	Heavy		Very low hazard rating	Category IV				
Medium (M)	Immediate occupancy	Superficial	Moderate		Minimal hazard rating	Category III				
High (H)	Operational	Superficial			No break	Category I or II				

Columns should be on the higher end of LOP

Response Limits

- Flexure members design based on displacement levels (support rotation)
- Column design based on ductility capacity
- Higher ductility allowed for seismic columns

Table 4.3Response limits for reinforced concrete*(See Clauses 4.5.2, 9.1.9, and A.4.5 and Table 4.8.)

Element type		B1		B2		B3		B4	
		μ _{max}	θ _{max}	μ _{max}	θ _{max}	μ_{max}	θ _{max}	μ_{max}	θ _{max}
	Single-reinforced slab or beam [†]	1	—	—	2°		5°	-	10°
	Double-reinforced slab or beam without shear reinforcement‡§	1	—	_	2°	—	5°	-	10°
Flexure	Double-reinforced slab or beam with shear reinforcement‡	1	—	—	4°	_	6°	—	10°
	With tension membrane**	1	—	—	6°	—	12°		20°

Table 4.3 (Concluded)

Element type		B1		B2		B3		B4	
		μ_{max}	θ_{max}	μ_{max}	θ_{max}	μ_{max}	θ_{max}	μ_{max}	θ_{max}
	Single-reinforced beam- column†	1	Ι		2°	Ι	2°		2°
Combined flexure and	Double-reinforced beam- column without shear reinforcement‡§	1	Ι	Ι	2°	Ι	2°	Ι	2°
axial compres- sion	Double-reinforced beam- column with shear	1	—	—	4°	—	4°	—	4°
	Termoreenter								
	Wall or seismic column++	0.9	-	1	_	2	-	3	-
	Nonseismic column++	0.7	_	0.8	_	0.9	_	1	_

aci

American Concrete Institute

Response Limits with FRP

- Higher ductility capacities for FRP confined columns than seismic columns
- FRP strengthening limits not currently defined

Table 4.9 **Response limits for FRP composites***

	(, ,			
B1		В	32	B3		
μ_{max}	θ _{max}	μ_{max}	θ _{max}	μ_{max}	θ _{max}	μn

(See Clauses 452919 and A45)

Element type	B1		B2		B3		B4	
	μ_{max}	θ _{max}	μ_{max}	θ _{max}	μ_{max}	θ _{max}	μ_{max}	θ_{max}
FRP confined columns	1	—	3	—	6	—	6	_
FRP strengthened No relements		response l	imits are p	rovided in	this Standa	ard†		

* Where a dash (-) is shown, the corresponding parameter is not applicable as a response limit.

 \dagger 1.0 may be used for all μ_{max} response limits until further information becomes available.

Column Confinement

- Increase in concrete compression strength and ductility
- Prevention of compression reinforcement buckling

American Concrete Institute

Concrete Confinement

No FRP Jacket

Low Ductility Capacity

FRP Jacket

American Concrete Institute

FRP Bond Under High Strain Rates

American Concrete Institute

Static Testing

- Debonding strains between 0.45% and 0.70%
- Development length measured to be approximately 50mm

Longitudinal Strain (%)							
Individual	Average	Variance					
0.52							
0.64	0.54	0.0062					
0.55	0.34	0.0002					
0.45							
0.70							
0.65	0.64	0.0020					
0.65	0.04	0.0029					
0.57							
0.57							
0.54	0.57	0.0022					
0.52	0.37	0.0025					
0.63							

Impact Testing

American Concrete Institute

Optical Measurement of Longitudinal Strain

Impact Response

- Playback at 4000 times slower than real time
- Boundary between prisms
- Bounds of FRP
- Stain vs. time and strain rate measured 100mm from joint
- Progression of debonding working away from joint

Strain at 100mm from joint

American Concrete Institute

High Strain Rate Response of FRP

- Test are too preliminary to draw conclusions
- Potential increase in FRP bond stress under high strain rates
- For the above specimen

$\mathcal{E}_{max,dynamic}$	0.82%		
€ _{max,static}	0.64%		
Ė	3.5 to 5.5s ⁻¹		
$DIF = \frac{\varepsilon_{max,dynamic}}{\varepsilon_{max,dynamic}}$	1.28		
Emax,static			

American Concrete Institute

Conclusions

- FRP jackets can enhance ductility and allow for higher design limits
- FRP strengthening should be used with care as brittle failure modes can occur
- FRP bond potentially has a dynamic increase factor allowing for higher FRP strains under high strain rates

American Concrete Institute

