Improving the Guidance to ASTM C1778 for Preventing Alkali-Silica Reaction in Concrete

NCHRP 10-103

Dr. Thano Drimalas (PI) – University of Texas At Austin Dr. Kevin Folliard (Co-PI) – University of Texas at Austin Dr. Michael D.A. Thomas (Co-PI) – University of New Brunswick Dr. Jason H. Ideker (Co-PI) – Oregon State University Dr. Benoit Fournier – Laval University Dr. Anuj Parashar (Postdoc) - Oregon State University Ardalan Ghanizadeh (PhD student) – University of New Brunswick Ashlee Hossack – University of New Brunswick

American Concrete Institute – Boston, MA. – November 1, 2023

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee,

Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete¹

This standard is issued under the fixed designation C1778; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A supenscript epsilon (a) indicates an editorial change since the last revision or reapproval.

1. Scope*

2. Referenced Documents

1.1 This guide provides guidance on how to address the potential for deleterious alkali aggregate reaction (AAR) in concrete construction. This guide addresses the process of identifying both potentially alkali-silica reactive (ASR) and alkali-carbonate reactive (ACR) aggregates through standardized testing procedures and the selection of mitigation options to minimize the risk of expansion when ASR aggregates are used in concrete construction. Mitigation methods for ASR aggregates are selected using either prescriptive or performance-based alternatives. Preventive measures for ACR aggregates are limited to avoidance of use. Because the potential for deleterious reactions depends not only on the concrete mixture but also the in-service exposure, guidance is provided on the type of structures and exposure environments where AAR may be of concert.

1.2 Units—The values stated in either SI units or inchpound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. 2.1 ASTM Standards:² C33/C33M Specification for Concrete Aggregates C114 Test Methods for Chemical Analysis of Hydraulic Cement

C125 Terminology Relating to Concrete and Concrete Aggregates

C150/C150M Specification for Portland Cement

C219 Terminology Relating to Hydraulic and Other Inorganic Cements

C294 Descriptive Nomenclature for Constituents of Concrete Aggregates

C295/C295M Guide for Petrographic Examination of Aggregates for Concrete

C311/C311M Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete

C586 Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method)

C595/C595M Specification for Blended Hydraulic Cements C618 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

C823/C823M Practice for Examination and Sampling of Hardened Concrete in Constructions

C856 Practice for Petrographic Examination of Hardened Concrete

C989/C989M Specification for Slag Cement for Use in Concrete and Mortars

C1105 Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction

C1157/C1157M Performance Specification for Hydraulic Cement

C1240 Specification for Silica Fume Used in Cementitious Mixtures

C1260 Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

*A Summary of Changes section appears at the end of this standard

Copyright @ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohookan, PA 19428-2959. United States

Copyright by ASTM Infl (ull rights reserved); Mon Jun 13 14:07:51 GMT 2022 Downloaded/printed by These Drimske (University of Texas at Austin) parsuant to License Agreement. No further reproductions authorized

¹ This guide is under the jurisdiction of ASTM Committee CO9 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee CO9.50 on Aggregate Reactions in Concrete.

Current edition approved March 1, 2022. Published April 2022. Originally approved in 2014. Last previous edition approved in 2020 as C1778 – 20. DOI: 10.1520/C1778-22.

AASHTO Designation R80: (Similar to ASTM C1778)

Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction

AASHTO R80 and ASTM C1778 consist of two steps:

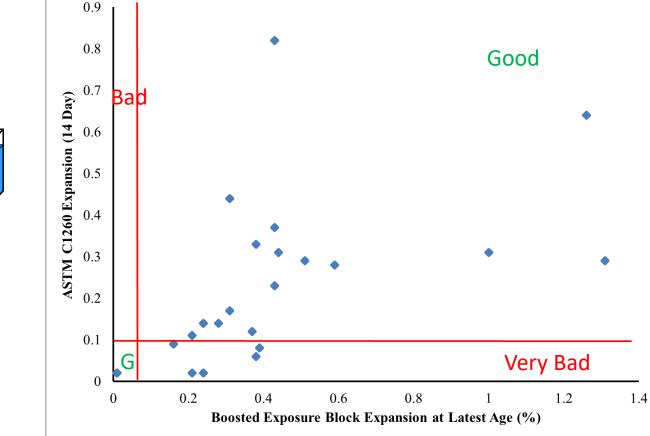
- 1. Evaluating aggregate reactivity
 - Alkali-silica and alkali-carbonate aggregates considered
- 2. Selecting preventive measures for alkali-silica reactive aggregates
 - Performance approach (expansion testing of mortar and/or concrete)
 - Prescriptive approach

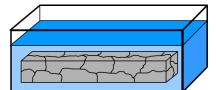
Background on these guidance documents – Decades of Laboratory tests and Existing Outdoor Exposure Site Data

AASHTO Designation R80: (Similar to ASTM C1778)

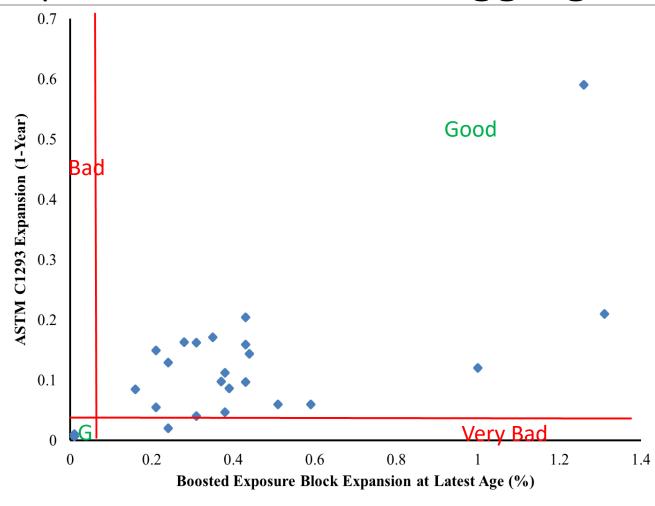
Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction

AASHTO R80 and ASTM C1778 consist of two steps:


- 1. Evaluating aggregate reactivity
 - Alkali-silica and alkali-carbonate aggregates considered
- 2. Selecting preventive measures for alkali-silica reactive aggregates
 - Performance approach (expansion testing of mortar and/or concrete)
 - Prescriptive approach



Existing Exposure Site Data – Aggregate Reactivity



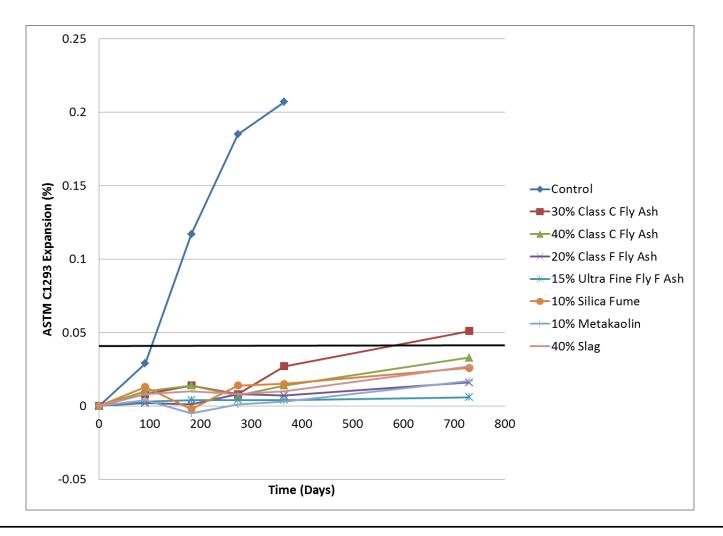
Existing Exposure Site Data – Aggregate Reactivity

AASHTO Designation R80: (Similar to ASTM C1778)

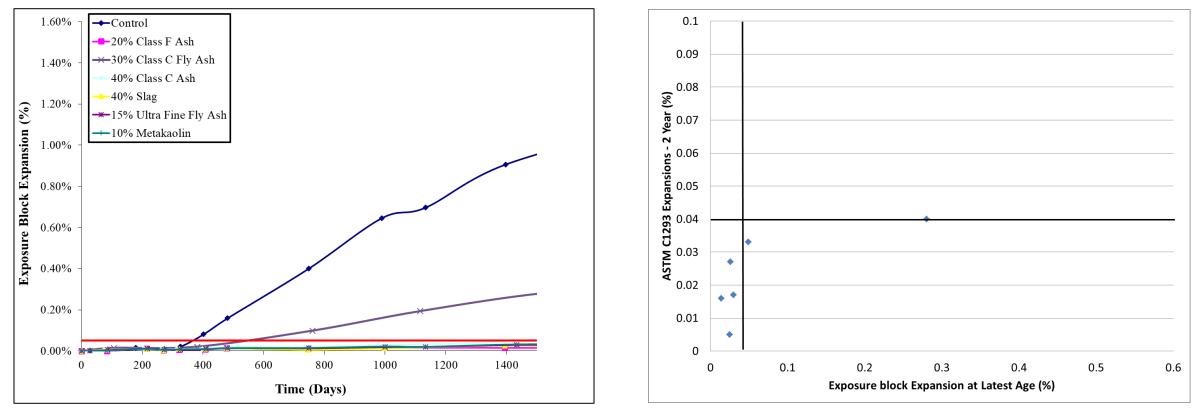
Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction

AASHTO R80 and ASTM C1778 consist of two steps:

- 1. Evaluating aggregate reactivity
 - Alkali-silica and alkali-carbonate aggregates considered
- 2. Selecting preventive measures for alkali-silica reactive aggregates
 - Performance approach (expansion testing of mortar and/or concrete)
 - Prescriptive approach

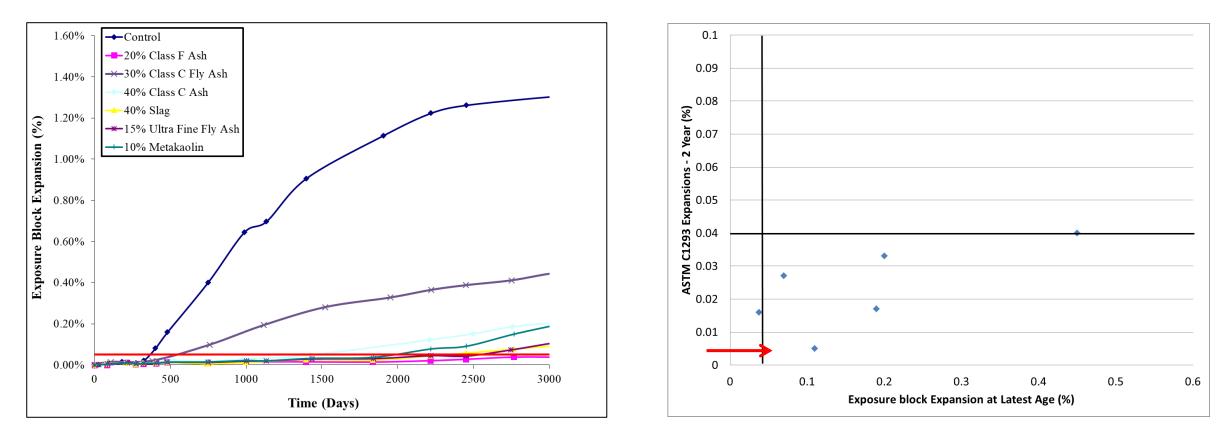


ASTM C1293 Mitigation Mixtures



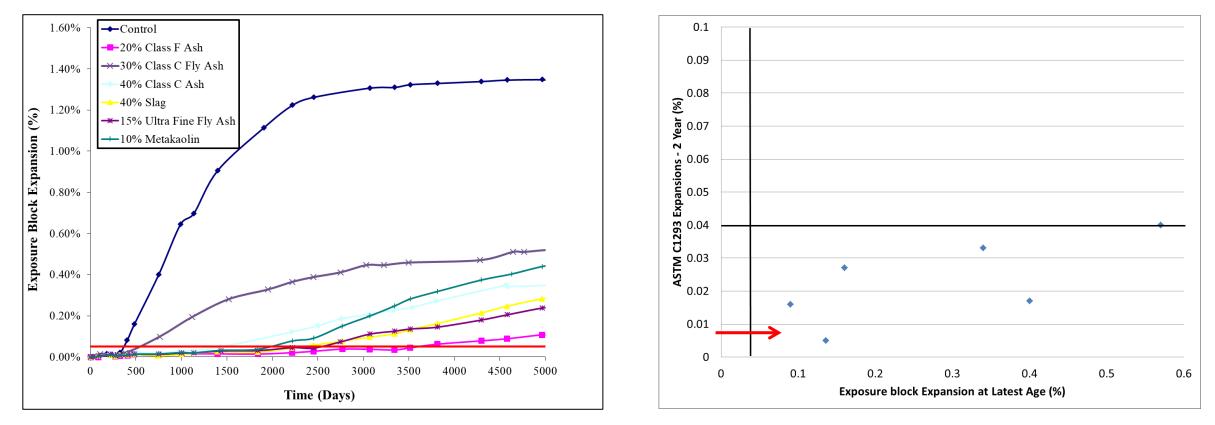
Existing Exposure Site Data – Prevention Mixtures

Exposure Block Expansion Results at 4 Years

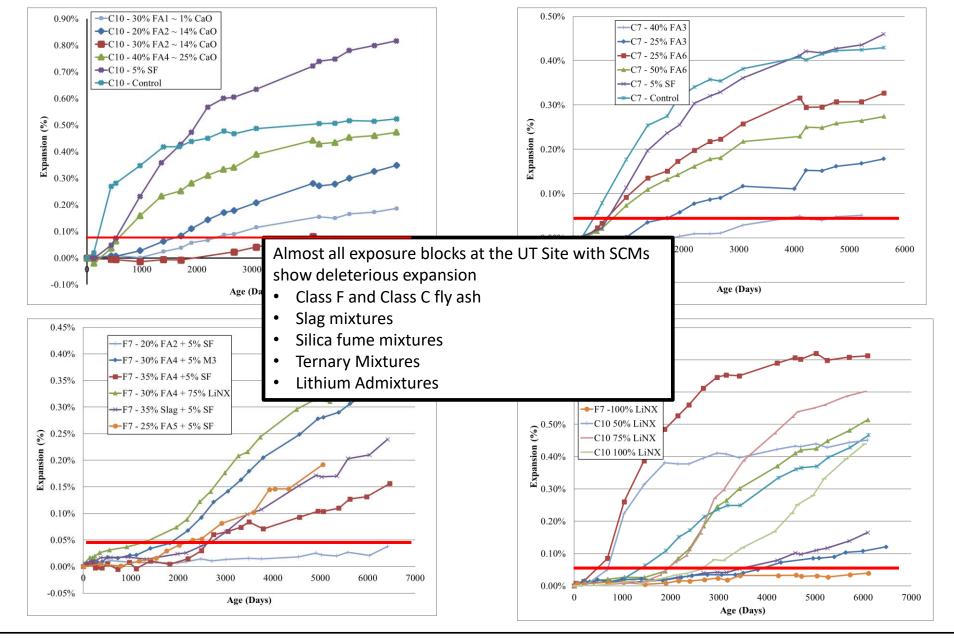


Existing Exposure Site Data – Prevention Mixtures

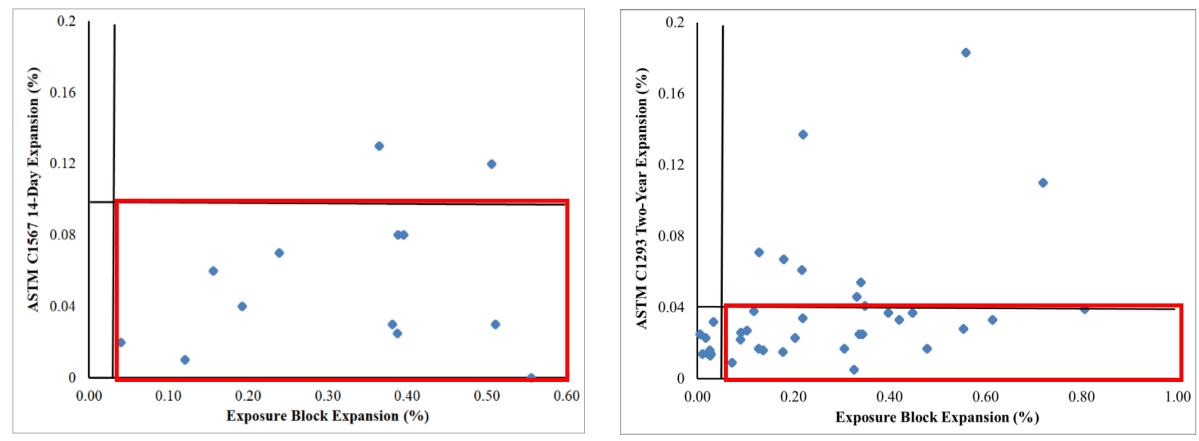
Exposure Block Expansion Results at 8 Years



Existing Exposure Site Data – Prevention Mixtures



Exposure Block Expansion Results at 12 Years



Correlation between Standardized Test Methods and Exposure blocks (SCM Mixtures)

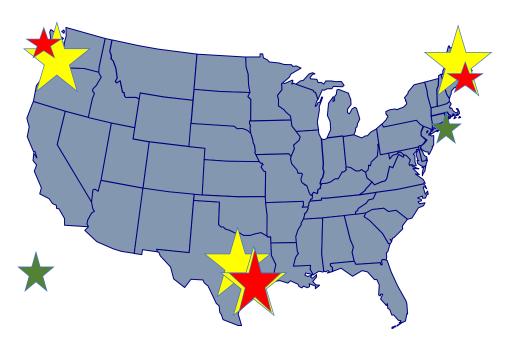
СРТ

AMBT

NCHRP 10-103 Objective

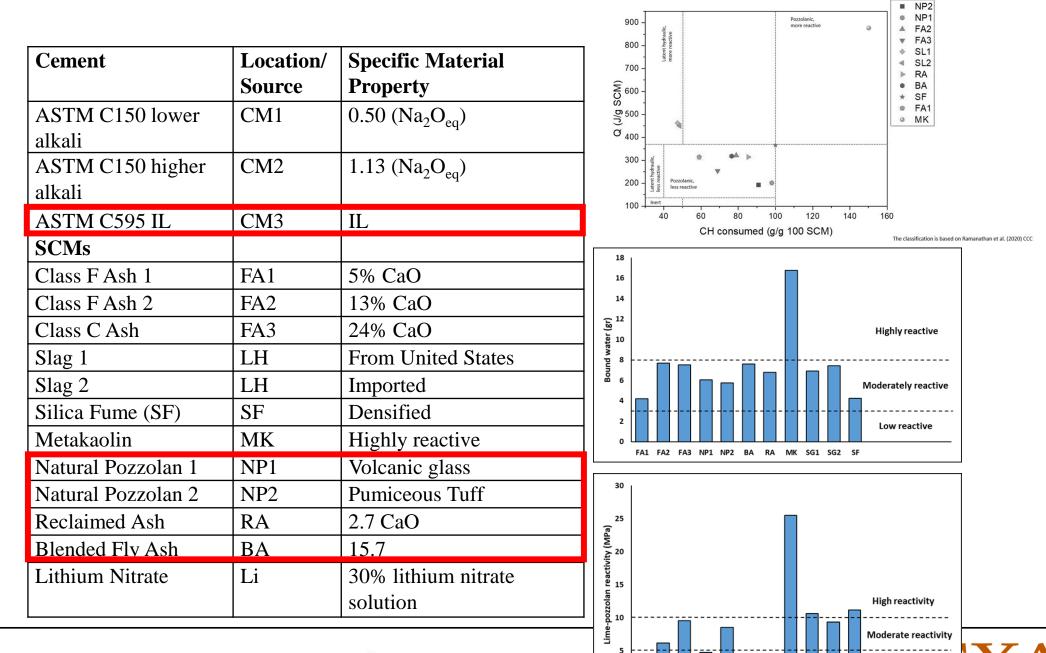
<u>The goal of this research project is to improve the Guidance of AASHTO R</u> <u>80/ASTM C 1778 for Alkali-Silica Reactivity (ASR) Potential and Mitigation</u> <u>through:</u>

- 1. Construct and evaluate field exposure blocks with varying concrete materials placed in diverse environmental conditions to supplement the existing information.
- 2. Enable improved benchmarking of current performance and job mixture tests that have been or are being developed currently.



Casting of New Concrete Exposure Blocks

- Cast 450 exposure blocks
 - Focus on lower aggregate reactivity (R1 and R2 aggregates)
 - Focus on lower alkali loadings
 - Representative of highway infrastructure mixture designs
 - SCMs
 - Reclaimed Fly Ash
 - Bottom Ash
 - Natural pozzolans
 - Metakaolin
 - Slag Cement
 - Environmental Factors



Aggregates	Aggregate ID	Location	Coarse/Fine	Initial Reactivity
University of Texas	NR1	Central Texas	Coarse	R0
	NR2	Central Texas	Fine	R0
	RAT1	Central Texas	Fine	R1
	RAT2	South Texas	Fine	R2
Oregon State	RAO1	NE California	Fine	R3
University	RAO2	SW Oregon	Fine	R3
University of New Brunswick	NR3	Newfoundland	Coarse	R0
	NR4	Newfoundland	Fine	R0
	RAC1	New Brunswick	Coarse	R3
	RAC2	Nova Scotia	Coarse	R2
	CA1	Pennsylvania	Coarse	R1
Common	CA2	Wyoming	Coarse	R1
Aggregates	CA3	North Carolina	Coarse	R1
	CA4	Virginia	Coarse	R1
Historical Aggregates	Jobe	West Texas	Fine	R3
	Spratt	Ontario	Coarse	R3
	Placitas	New Mexico	Coarse	R3
	Sudbury	Ontario	Coarse	R2

Low reactivity

BA RA MK SG1 SG2 SF

FA1 FA2 FA3 NP1 NP2

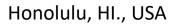
No reactivity

sity of Texas at Austin

Austin, TX., USA Corvallis, OR., USA Fredericton, NB., Canada

Port Aransas, TX. USA

Newport, OR., USA



Treat Island, ME., USA

NCHRP 10-103 Objective

<u>The goal of this research project is to improve the Guidance of AASHTO R</u> <u>80/ASTM C 1778 for Alkali-Silica Reactivity (ASR) Potential and Mitigation</u> <u>through:</u>

- 1. Construct and evaluate field exposure blocks with varying concrete materials placed in diverse environmental conditions to supplement the existing information.
 - Less severe blocks (lower alkali loadings, lower aggregate reactivity)
 - SCMs
 - Time!

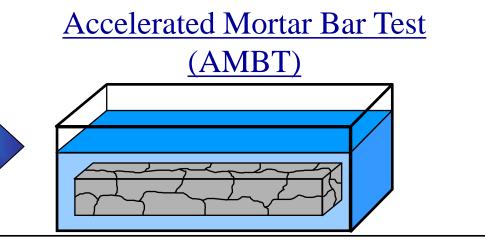
NCHRP 10-103 Objective

<u>The goal of this research project is to improve the Guidance of AASHTO R</u> <u>80/ASTM C 1778 for Alkali-Silica Reactivity (ASR) Potential and Mitigation</u> <u>through:</u>

- 1. Construct and evaluate field exposure blocks with varying concrete materials placed in diverse environmental conditions to supplement the existing information.
- 2. Enable improved benchmarking of current performance and job mixture tests that have been or are being developed currently.

Existing Standard Laboratory Tests

Laboratory Tests have to "benchmarked" against tests on concrete in real exposure conditions

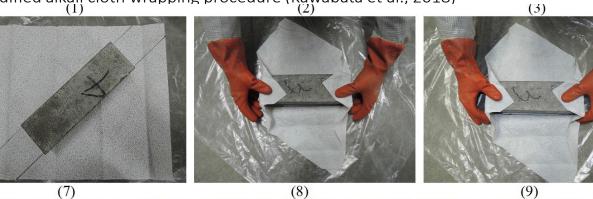

Concrete Prism Test (CPT)

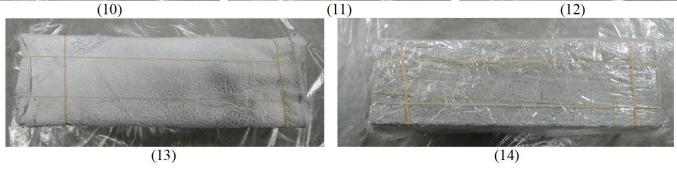
- CSA, ASTM C1778, and AASHTO R80 are all benchmarked against high-alkali exposure blocks.
- CSA guidelines rely upon CPT only, whereas ASTM/AASHTO allow CPT and/or AMBT.

New/Modified Laboratory Tests

Several new and revised test methods were included:

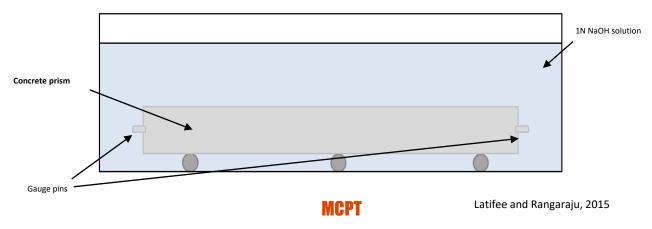
- AASHTO T380 (miniature concrete prism test)
- UNBCCT (University of New Brunswick Concrete Prism Test)
- T-Fast
- Variations of ASTM C1293, including wrapping of prisms (to reduce leaching)





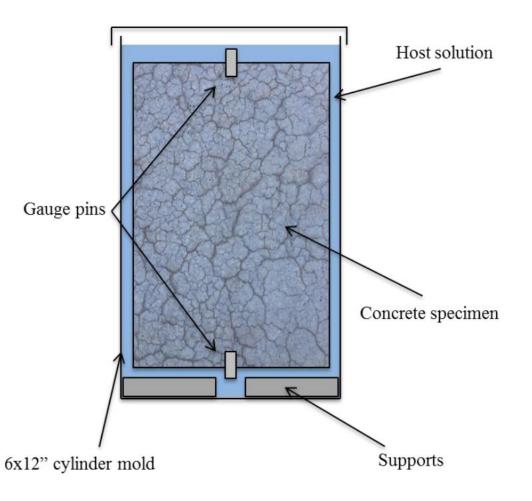
RILEM AAR-13

Modified alkali cloth wrapping procedure (Kawabata et al., 2018)



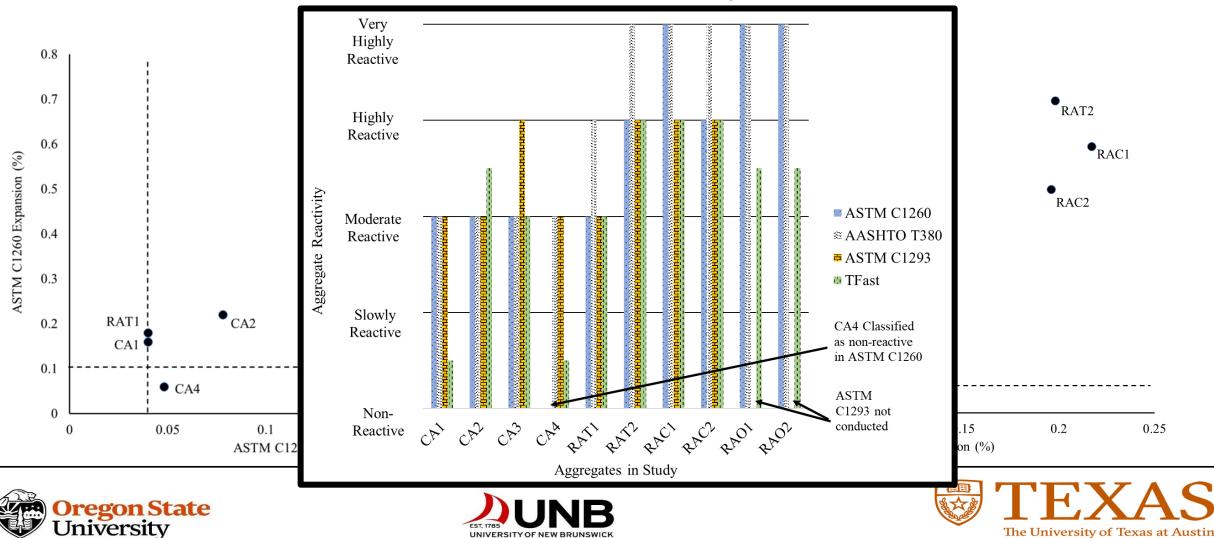
AASHTO T380 (Miniature Concrete Prism Test)

- Miniature concrete prism test
- 2 x 2 x 11.25 in. (50 X 50 X 285mm) bar
- 140 F (60 C) exposure
- 1 N NaOH (current standard)
- 56 or 84 day duration



University of New Brunswick Concrete Cylinder Test (UNBCCT)

- 145 x 280 mm cylinders cast, stored in 150 x 300 mm. mold
- Matched pore solution fills area between mold and cylinder
- 60C (140F) temperature



Project Aggregates: Aggregate Reactivity – Test Method Comparison

Project Ag_§ Following A

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: C1778 - 22

Standard Guide for Reducing the Risk

Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete¹

This standard is issued under the fixed designation C1778; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript projection (e) indicates an editorial change since the last revision or reapproval.

1. Scope*

TABType of SCMAAlkali Conter
(% Na2(Fly ashB<3.0</td>(CaO \leq 18 %)3.0 - 4Slag Cement<1.0</td>Silica FumeC
(SiO2 > 85 %)<1.0</td>

^A The SCM may be added directly to the c cement should meet the specifications c requirements of Specification C595/C595 ^B Fly ashes with greater than 18 % CaO ca in 8.2 and 8.3.

^C The minimum level of silica fume (as a p (KGA) or lb/yd³ (LBA). Regardless of the ^D Note—the use of high levels of SCM in (and cured.

1.1 This guide provides guidance on how to address the potential for deleterious alkali aggregate reaction (AAR) in concrete construction. This guide addresses the process of identifying both potentially alkali-silica reactive (ASR) and alkali-carbonate reactive (ACR) aggregates through standardized testing procedures and the selection of mitigation options to minimize the risk of expansion when ASR aggregates are used in concrete construction. Mitigation methods for ASR aggregates are selected using either prescriptive or performance-based alternatives. Preventive measures for ACR aggregates are limited to avoidance of use. Because the potential for deleterious reactions depends not only on the concrete mixture but also the in-service exposure, guidance is provided on the type of structures and exposure environments where AAR may be of concern.

1.2 Units—The values stated in either SI units or inchpound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

C33/C33M Specification for Concrete Aggregates C114 Test Methods for Chemical Analysis of Hydraulic Cement

- C125 Terminology Relating to Concrete and Concrete Aggregates
- C150/C150M Specification for Portland Cement

C219 Terminology Relating to Hydraulic and Other Inorganic Cements

C294 Descriptive Nomenclature for Constituents of Concrete Aggregates

C295/C295M Guide for Petrographic Examination of Aggregates for Concrete

C311/C311M Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete

C586 Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method)

C595/C595M Specification for Blended Hydraulic Cements C618 Specification for Coal Fly Ash and Raw or Calcined

Natural Pozzolan for Use in Concrete C823/C823M Practice for Examination and Sampling of

Hardened Concrete in Constructions C856 Practice for Petrographic Examination of Hardened

Concrete C989/C989M Specification for Slag Cement for Use in Concrete and Mortars

C1105 Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction

C1157/C1157M Performance Specification for Hydraulic Cement

- C1240 Specification for Silica Fume Used in Cementitious Mixtures
- C1260 Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)

n <u>s)</u> <u>Level Z</u> <u>40</u> <u>65</u> <u>40 × KGA</u> <u>Table 8</u>

revention

uirements of Specification C618, slag Blended cements should meet the

or

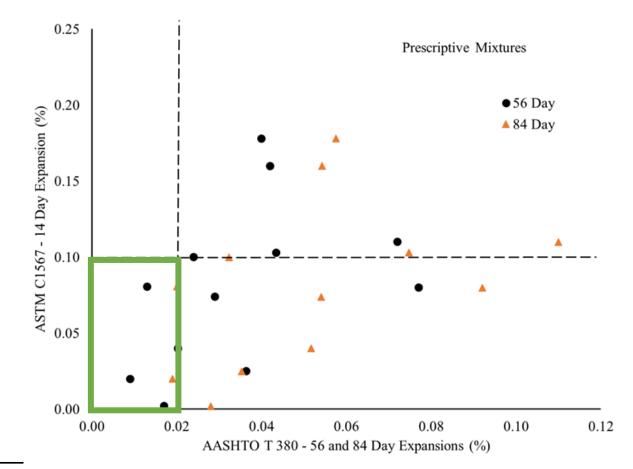
 $2.5 \times LBA$

ne performance-based testing outlined

rete expressed in either units of kg/m³ the only method of prevention. is not properly proportioned, finished,

Oregon State University ¹ This guide is under the jurisdiction of ASTM Committee C09 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.50 on Aggregate Reactions in Concrete.

Current edition approved March 1, 2022. Published April 2022. Originally approved in 2014. Last previous edition approved in 2020 as C1778 – 20. DOI: 10.1520/C1778-22. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@statm.org. For Annual Book of ASTM Standards' volume information, refer to the standard's Document Summary page on the ASTM website.

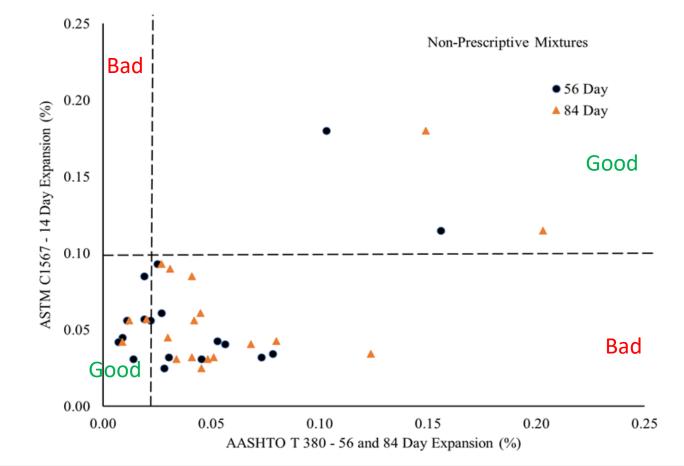


*A Summary of Changes section appears at the end of this standard

Copyright @ ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohooken, PA 19428-2959. United States

Copyright by ASTM Inf1 (ull rights reserved); Mon Jan 13 14:07:51 GMT 2022. Downloads/printed by These Drinsless (University of Texas at Austin) parsuant to License Agreement. No further reproductions sutherized

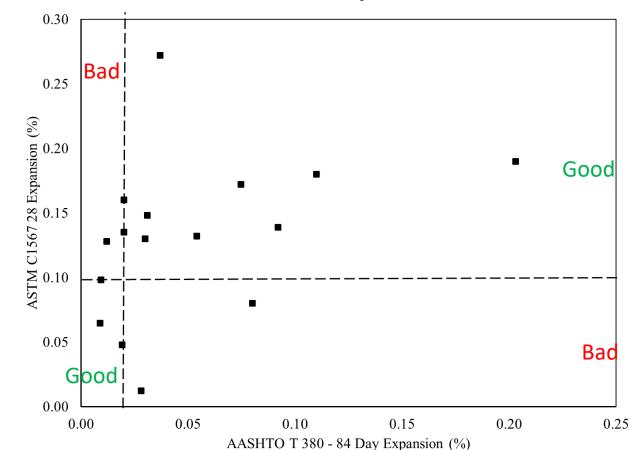
Project Aggregates: Aggregate Prevention Following ASTM C1778 Prescriptive Levels



Project Aggregates: Aggregate Prevention Following ASTM C1778 Non-Prescriptive Levels

Non-Prescriptive SCMs

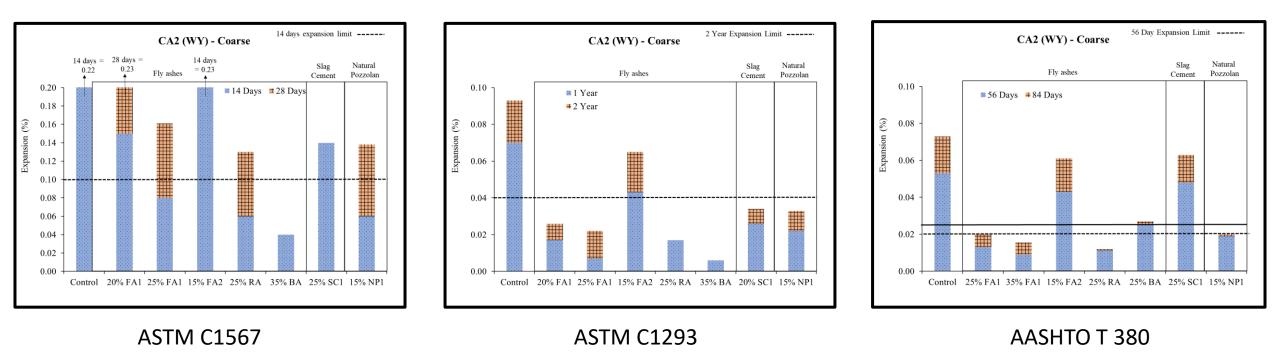
- Blended Ash
- Metakaolin
- Reclaimed Ash
- High Calcium Fly Ash (Class C)
- Natural Pozzolans



Project Aggregates: Aggregate Prevention Following ASTM C1778 Non-Prescriptive Levels

Non-Prescriptive SCMs

- Blended Ash
- Metakaolin
- Reclaimed Ash
- High Calcium Fly Ash (Class C)
- Natural Pozzolans



Prevention of R1 Aggregate – ASTM C1567

More tests

- UNBCCT
- AAR-13

This data will help benchmark against the 450 concrete exposure blocks

Project Ag_§ Following A

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: C1778 - 22

Standard Guide for Reducing the Risk

Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete¹

This standard is issued under the fixed designation C1778; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript periodico (a) indicates an editorial change since the last revision or reapproval.

1. Scope*

TABType of SCMAAlkali Conter
(% Na2(Fly ashB<3.0</td>(CaO \leq 18 %)3.0 - 4Slag Cement<1.0</td>Silica FumeC
(SiO2 > 85 %)<1.0</td>

^A The SCM may be added directly to the c cement should meet the specifications c requirements of Specification C595/C595 ^B Fly ashes with greater than 18 % CaO ca in 8.2 and 8.3.

^C The minimum level of silica fume (as a p (KGA) or lb/yd³ (LBA). Regardless of the ^D Note—the use of high levels of SCM in (and cured.

1.1 This guide provides guidance on how to address the potential for deleterious alkali aggregate reaction (AAR) in concrete construction. This guide addresses the process of identifying both potentially alkali-silica reactive (ASR) and alkali-carbonate reactive (ACR) aggregates through standardized testing procedures and the selection of mitigation options to minimize the risk of expansion when ASR aggregates are used in concrete construction. Mitigation methods for ASR aggregates are selected using either prescriptive or performance-based alternatives. Preventive measures for ACR aggregates are limited to avoidance of use. Because the potential for deleterious reactions depends not only on the concrete mixture but also the in-service exposure, guidance is provided on the type of structures and exposure environments where AAR may be of concern.

1.2 Units—The values stated in either SI units or inchpound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

C33/C33M Specification for Concrete Aggregates C114 Test Methods for Chemical Analysis of Hydraulic Cement

- C125 Terminology Relating to Concrete and Concrete Aggregates
- C150/C150M Specification for Portland Cement

C219 Terminology Relating to Hydraulic and Other Inorganic Cements

C294 Descriptive Nomenclature for Constituents of Concrete Aggregates

C295/C295M Guide for Petrographic Examination of Aggregates for Concrete

C311/C311M Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete

C586 Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method)

C595/C595M Specification for Blended Hydraulic Cements C618 Specification for Coal Fly Ash and Raw or Calcined

Natural Pozzolan for Use in Concrete C823/C823M Practice for Examination and Sampling of

Hardened Concrete in Constructions C856 Practice for Petrographic Examination of Hardened

Concrete C989/C989M Specification for Slag Cement for Use in Concrete and Mortars

C1105 Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction

C1157/C1157M Performance Specification for Hydraulic Cement

- C1240 Specification for Silica Fume Used in Cementitious Mixtures
- C1260 Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)

n <u>s)</u> <u>Level Z</u> <u>40</u> <u>65</u> <u>40 × KGA</u> <u>Table 8</u>

revention

uirements of Specification C618, slag Blended cements should meet the

or

 $2.5 \times LBA$

ne performance-based testing outlined

rete expressed in either units of kg/m³ the only method of prevention. is not properly proportioned, finished,

Oregon State University ¹ This guide is under the jurisdiction of ASTM Committee C09 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.50 on Aggregate Reactions in Concrete.

Current edition approved March 1, 2022. Published April 2022. Originally approved in 2014. Last previous edition approved in 2020 as C1778 – 20. DOI: 10.1520/C1778-22. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@statm.org. For Annual Book of ASTM Standards' volume information, refer to the standard's Document Summary page on the ASTM website.

*A Summary of Changes section appears at the end of this standard

Copyright @ ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohooken, PA 19428-2959. United States

Copyright by ASTM Inf1 (ull rights reserved); Mon Jan 13 14:07:51 GMT 2022. Downloads/printed by These Drinsless (University of Texas at Austin) parsuant to License Agreement. No further reproductions sutherized

ASTM C1778 Recommended New Prescriptive Table

Type of SCM	Alkali Level of SCM (%Na ₂ O _e)	Minimum Replacement Level ** (% by mass of Cementitious Material)				
		Level W	Level X	Level Y	Level Z	Level ZZ
Fly Ash (CaO ≤ 18%)	$x \le 3.0$	20	25	25	35	
	$3.0 < x \le 4.5$	25	30	Not Permitted	Not Permitted	
Slag Cement	< 1.0	30	40	50	65	
Natural Pozzolan (Meeting ASTM C618 Class N)	x ≤ 8.0	25	Assess in C1567/ T 380	Assess in C1567/ T 380	Assess in C1567/ T 380	Table 7
Silica Fume (SiO ₂ \ge 0.85)	≤ 1.0%	2.0 x KGA 1.2 x LBA	2.5 x KGA or 1.5 LBA	Not permitted as a sole preventive option	Not permitted as a sole preventive option	

- Increasing the minimum fly ash replacement level for fly ash and slag cement
- Addition of Natural pozzolans
- Not permitting higher alkali fly ash and silica fume in higher risk situations

Correlations with Historical exposure blocks

Test Method	Accuracy of Tests Matching Historical Blocks		
ASTM C1567	14 Day Expansion Limit = 0.100		
	44%		
ASTM C1567	28 Day Expansion Limit = 0.100		
	81%		
ASTM C1293	2 Year Expansion Limit = 0.040		
	28%		
AAR-13	2 Year Expansion Limit = 0.040		
	13%		
AASHTO T 380	84 Day Expansion Limit = 0.030		
	63%		
UNBCCT	1 Year Expansion Limit = 0.040		
	38%		

Greater than 75% Correlation would be satisfactory

Correlations with Historical exposure blocks

Test Method	Accuracy of Tests Matching Historical Blocks			
ASTM C1567	14 Day Expansion Limit = 0.100	14 Day Expansion Limit = 0.080		
	44%	56%		
ASTM C1567	28 Day Expansion Limit = 0.100	28 Day Expansion Limit = 0.080		
	81%	88%		
ASTM C1293	2 Year Expansion Limit = 0.040	2 Year Expansion Limit = 0.030		
	28%	39%		
AAR-13	2 Year Expansion Limit = 0.040	2 Year Expansion Limit = 0.030		
	13%	25%		
AASHTO T 380	84 Day Expansion Limit = 0.030	84 Day Expansion Limit = 0.025		
	63%	75%		
UNBCCT	1 Year Expansion Limit = 0.040	1 Year Expansion Limit = 0.030		
	38%	77%		

Greater than 75% Correlation would be satisfactory

Correlations with Historical exposure blocks

Test Method	Accuracy of Tests Matching Historical Blocks			
ASTM C1567	14 Day Expansion Limit = 0.100	14 Day Expansion Limit = 0.080	14 Day Expansion Limit = 0.060	
	44%	56%	72%	
ASTM C1567	28 Day Expansion Limit = 0.100	28 Day Expansion Limit = 0.080	28 Day Expansion Limit = 0.060	
	81%	88%	94%	
ASTM C1293	2 Year Expansion Limit = 0.040	2 Year Expansion Limit = 0.030	2 Year Expansion Limit = 0.020	
	28%	39%	56%	
AAR-13	2 Year Expansion Limit = 0.040	2 Year Expansion Limit = 0.030	2 Year Expansion Limit = 0.020	
	13%	25%	63%	
AASHTO T 380	84 Day Expansion Limit = 0.030	84 Day Expansion Limit = 0.025	84 Day Expansion Limit = 0.020	
	63%	75%	81%	
UNBCCT	1 Year Expansion Limit = 0.040	1 Year Expansion Limit = 0.030	1 Year Expansion Limit = 0.020	
	38%	77%	92%	

Greater than 75% Correlation would be satisfactory

Lessons Learned Since Development of ASTM C1778

- 1. The concrete prism test has continued to be very reliable in assessing aggregate reactivity (1-yr, 0.04% expansion).
- 2. The 2-year concrete prism test has been found to underestimate the dosage of SCM (or lithium nitrate) needed to control ASR-induced expansion, based on correlation with <u>high-alkali loading</u> exposure blocks.
- Based on the preliminary findings from NCHRP 10-103, revisions are recommended to ASTM C1778/AASHTO R80, as described next.

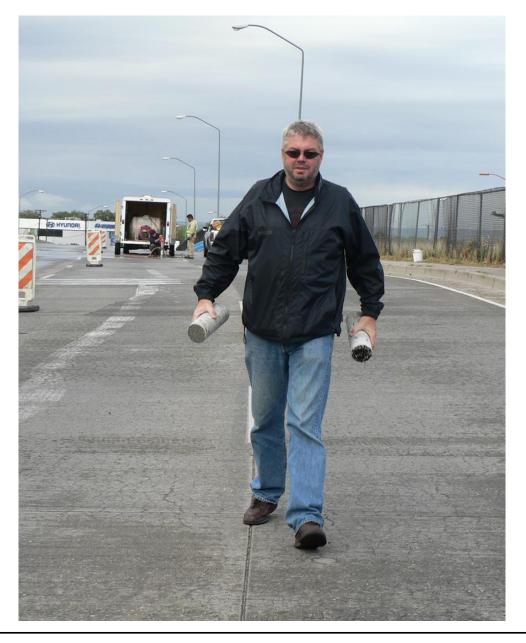
NCHRP 10-103 – KEY FINDINGS AND RECOMMENDATIONS

- 1. ASTM C1293 is still recommended for evaluating aggregate reactivity but NOT to evaluate preventive measures.
- AASHTO T380 is recommended to evaluate aggregate reactivity or preventive measures (56 and 84 day expansion limits, respectively).
- 3. ASTM C1567, once properly benchmarked against ASTM C1293 or AASHTO T380 for a given aggregate, can be used to determine SCM dosage using a 28-day expansion limit of 0.10 percent.
- 4. Natural pozzolans should be included both in the performance and prescriptive-based approaches.
- 5. The SCM dosages previously recommended should be increased to better correlate with exposure blocks.
- 6. A combination of SCMs and cement alkali loading limits are recommended for critical structures.
- 7. All of these recommendations may change as the data from the 450 exposure blocks emerges.

Other Continuing ASR Research

Under funding from Airfield Pavement Technology Program (ACPTP):

- Additional materials, including Natural Pozzolans, Reclaimed or blended fly ashes, ground bottom ash, and chemical admixtures (e.g., calcium nitrite, magnesium acetate) are being evaluated.
- New test methods are being evaluated, including:
 - Alkali release tests (from SCMs or aggregates)
 - Alkali Threshold Test



Thank you!

Thano Drimalas thano.drimalas@utexas.edu

Questions?

