nanoCarbon Black (nCB) in UHPC Effect on Conductivity and Mechanical Properties

Nancy Soliman, A. Omran, Daniel Gracious, Paige Martinez

ACI Fall Convention - Boston MA, Oct. 29 - Nov. 2 2023

Motivation

A radical change is needed:

Cut CO₂ emission by 50% in the next 10 years (stay below temperature rise of 1.5 °C); reach net zero in 2050

USA has joined over 120 countries in committing to be net-zero emission by 2050

Urbanization: concrete usage increases exponentially

By 2050 more than **two thirds (6.7 billion)** of the world's population will live in **urban areas**

To meet the urbanization needs, **new infrastructure** and **buildings** will be required

Concrete is the most widely used material for infrastructure

J.Y. Richard, 2019

Does concrete meet social and environmental goals?

Eco-efficient Issues: Cement contributes up to 8% of global CO₂ emission

Durability issues: repair of deteriorated infrastructures costs \$\$\$ billions

CO₂ emissions by business sector

1 ton of cement leads to the emission of 900 kg CO₂ (CaCO₃ decomposition and Fuel)

Monteiro, P., Miller, S. & Horvath, A. Nature Mater. 16, 698–699 (2017) 40% of bridges in US require rehabilitation costing ~ \$28 billion annually

Functionality issues:

concrete has no negative entropy input through matter or energy with external stimuli

Negative entropy input

Smart materials are designed with properties that can be changed in a controlled fashion by external stimuli (stress, moisture, electric, chemical compounds Han et al. 2017

What is ultra-high-performance concrete (UHPC)?

UHPC: is a new type of concrete that provides:

- Ultra-high strength
- High ductility
- Excellent durability

Sement (<100 μm) ■ Silica Fume (0.10 – 0.20) µm Quartz powder (<100 µm) Quartz sand (150-630 µm) 40.8 - 42 % Water 9.3 - 12% Superplastizer Fiber 8.4 - 9.5% No coarse aggregate

Typical composition of UHPC

Why UHPC?

- UHPC can be used as conventional HPC without passive reinforcement
- UHPC can lead to longer structure spans with reduced member size and self-weight (< 70 % NC or HPC)</p>
- ➤ UHPC has superior durability properties → longer service life and reduced maintenance cost

Beams with equal moment capacities

Challenges with UHPC

- 1. Higher cement content (800 -1000 kg/m³)
 - requires higher energy
 - consumes natural resources
 - high CO_2 (1000 kg cement releases \approx 864 kg CO_2)
 - GHG and global warming
- 2. High amount of crystallized silica materials
 - high cost
 - consumes natural resources
 - carcinogenic to humans
 - biological diversity

Sustainable UHPC through using SCM

N. A. Soliman and A. Tagnit, 2016, Journal of Construction and Building Materials

Motivation

Winter comes with threat of icy roads, which turns highways deadly

Repair of deteriorated infrastructures costs \$ billions

Can UHPC be a sustainable material by adding new functionalities?

Nanomodified Electron Conductive UHPC (NEC-UHPC)

<u>**Objective:**</u> To construct intricate multi-conductive networks in NEC-UHPC to enhance electrical conductivity <u>via two mechanisms;</u>

- Quantum tunneling conduction induced by nanomaterials (nCB)
- Contact conduction facilitated by WC, Steel fiber a micro-scale material

Nano and Micro Materials Integration

Self-heating & Sensing

Research question?

Dispersion

What is the dispersion mechanism of hydrophobic functional materials, nCB particles, in a complex UHPC matrix, and

How does it affect the electrical properties and strength capacity of the composite?

Scalability

How do the different ratios of conductor-insulator composites (e.g., water-tocement ratio, volume of cement paste, volume of aggregate, and nano/micro functional materials) in NEC-UHPC affect the electrical conductivity, the Joule effect, and their interrelation?

Mechanical

How does the formation of a conductive material network " volumetric wire" in NEC-UHPC affect the micro and macrostructure and associated mechanical properties?

Conductivity of NEC-UHPC

- increases with nCB content
- − percolation \approx 2% nCB
- Exponent (t) of 1.67 in the inset relates to conducting phase geometry. A higher value indicates a more complex nCB network, consistent with amorphous solids physics.

- Percolation: conductivity increases by several orders of magnitude
- Saturation: increasing carbon concentration results in marginal increase in conductivity

<u>Mechanical and microstructural properties</u>: multiscale engineering chemo-mechanical material characterization

Results: Mechanical properties- macroscale (compressive strength & Tensile strength)

nCB addition \rightarrow compressive strength reduction nCB addition \rightarrow tensile strength reduction f'_ reduction >> tensile strength

Fracture analysis via scratch test – microscale

- nCB addition \rightarrow increases fracture toughness
- Improvement on fracture toughness is originated from the effect of crack deflection, which results from the nCB inclusion in the cement matrix
- crack deflection is observed in a magnified SEM image of the scratch groove

The tortuosity (non-planar geometry) of the crack path was visible along with crack surface.

Results: ductility

Indentation Modulus / Indentation Hardness (M/H): competition of plastic dissipation and elastic energy storage

FPZ: zone of a material at the head of the crack tip where the stress decreases from a maximum value to the far field stress.

- nCB inclusion \rightarrow reduces ductility (M/H) and fracture process zone
- the plastic dissipation capacity is reduced and hence the FPZ becomes smaller

Discussion questions?

Origin of strength reduction (de-cohesion) – microscale

- Friction enhancement at macroscale results from filling the capillary pores with nCB
- Cohesion reduced by the nCB addition → losses in the strength and ductility

What are the reasons for macroscopic de-cohesion of materials?

Origin of microscopic de-cohesion – reduction of mechanical at nano scale < 1µm

- Addition of nCB decreased indentation modulus and hardness of C-S-H
- Microscopic decohesion results from reduction in hardness and (stiffness) at nano-scale with carbon content

Why does nCB addition reduce the hardness and stiffness at nano scale?

- Dispersion: using surface functionality, and chemical and physical techniques
- ✓ Unveiling the nano-mechanical signature of NEC-UHPC
- ✓ Investigating the self-sensing and self-heating characterization of NEC-UHPC

Conclusion

- \checkmark Addition of nCB leads to:
 - Enhance electrical conductivity
 - <u>Friction</u> enhancement at the micro-scale due to the presence of nCB in large pores
 - <u>De-cohesion</u> results from a reduction in C-S-H packing density at the nanoscale

