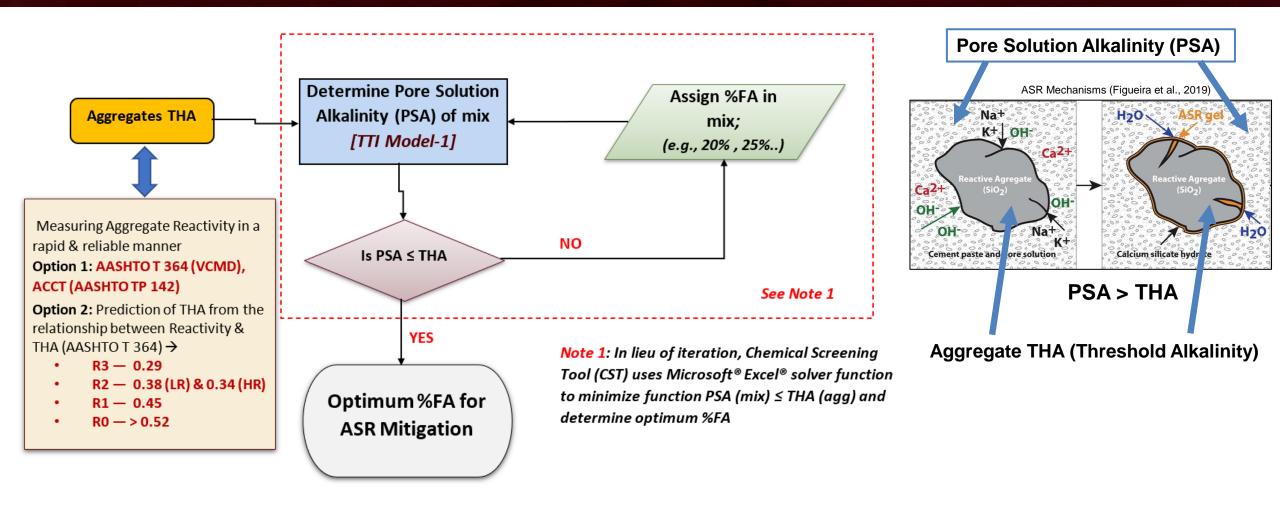
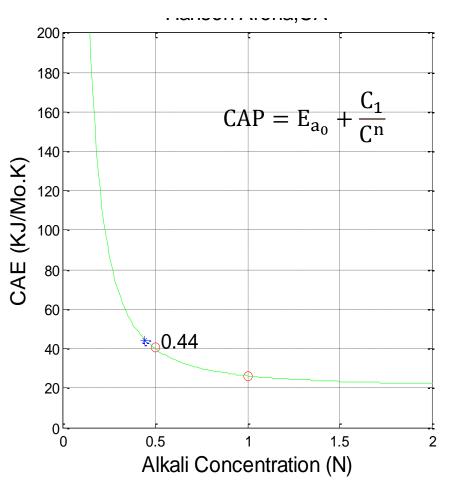
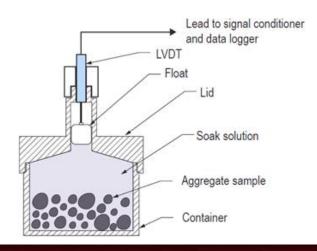
Innovative Performance-based Approach Using Emerging Test Methods to Evaluate ASR Mitigation Effectiveness of Conventional and Alternative SCMs


Anol Mukhopadhyay, Ph.D., P.G. Pravin Saraswatula, Ph.D., E.I.T Kai-Wei (Victor) Liu, Ph.D., E.I.T.

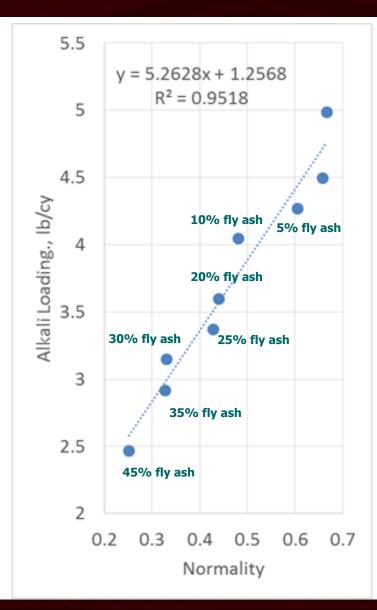
Recent Developments in Test Methods and Risk Management for Aggregate Reactions, ACI Fall Convention, 1st November, 2023



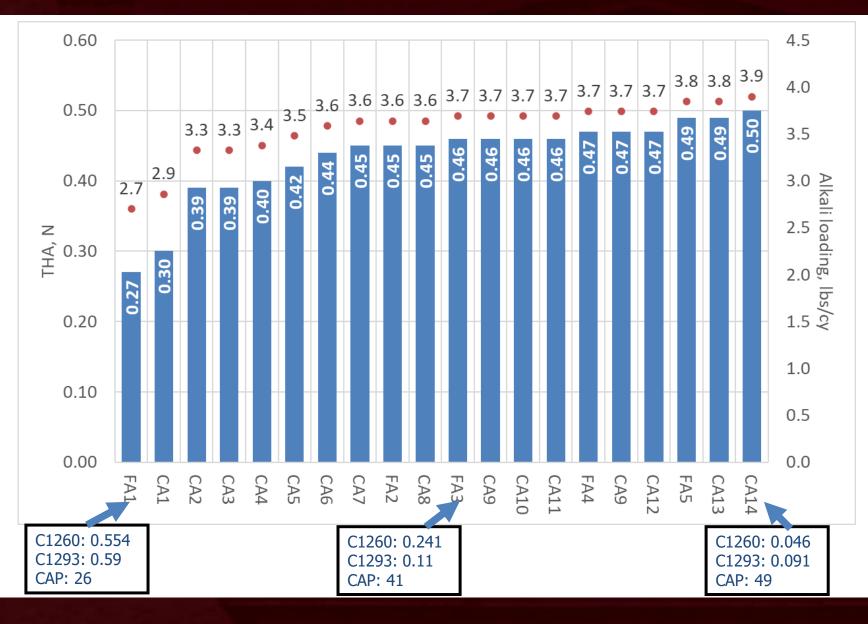
Chemical Screening Tool (CST) to Estimate Fly Ash (FA) Dosage: Methodology


Saraswatula, P., A. Mukhopadhyay, and K.-W. Liu. Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali Silica Reaction in Concrete. *Transportation Research Record: Journal of the Transportation Research Board*, 2022

Measuring Aggregate Threshold Alkalinity (THA) Using AASHTO T364 (VCMD) Method

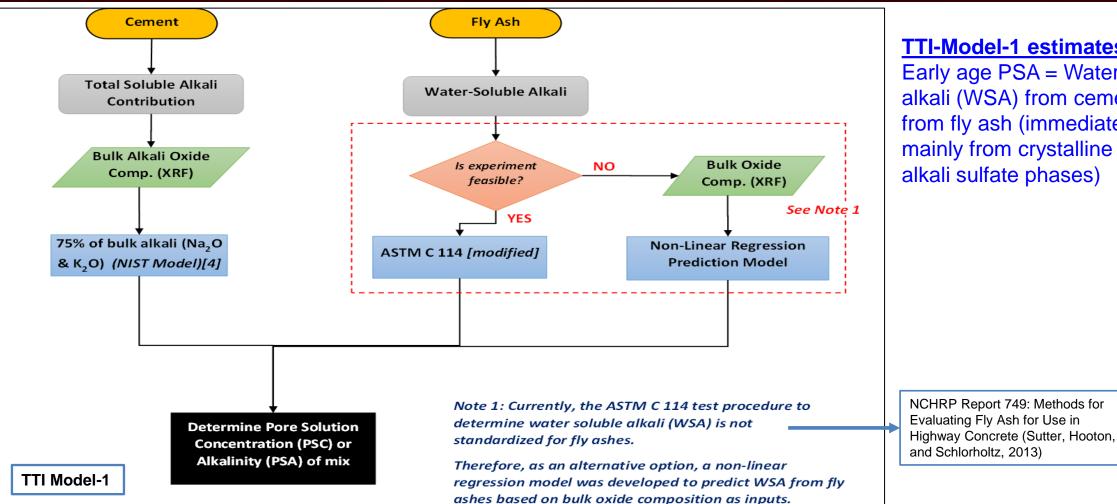

AASHTO T 364-17: Determination of Composite Activation Energy of Aggregates due to Alkali-Silica Reaction (Chemical Method)

- Solution volume changes due to ASR over time a float-LVDT-data acquisition system 3 temperatures (e.g., 60, 70, and 80°C in an oven) and 3 levels of alkalinity [1N, 0.5N, and 0.25N NaOH + Ca(OH)2]
- Estimation of rate constants and determination of CAP using the Arrhenius rate theory



THA is calculated mathematically from the CAP vs alkalinity plot when the slope of Eq. (1) equals -100

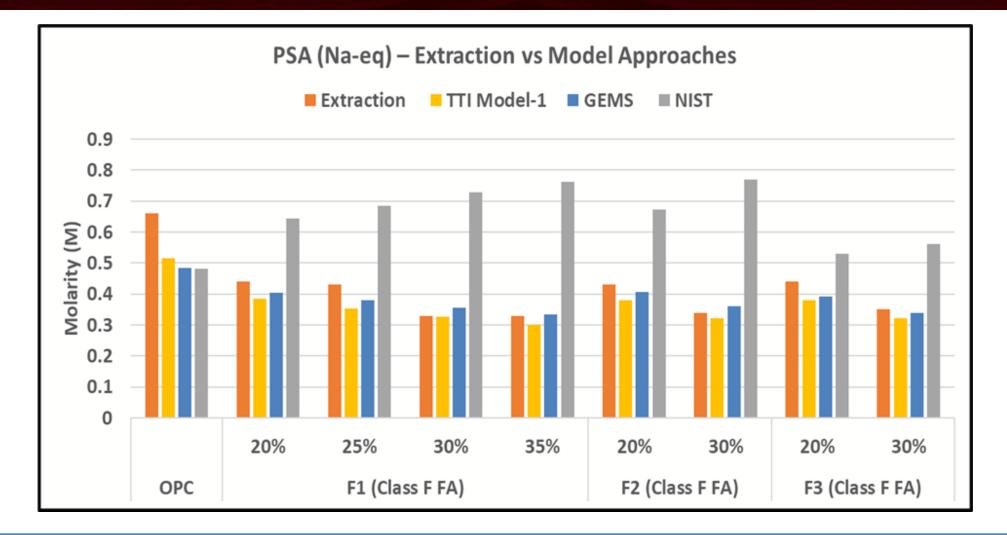
Conversion of THA into Alkali loading


Alkali Loading vs. THA

ТНа	Alkali loading, lbs/cy	
<0.3	≤3	R3
0.3 to 0.4	3 to 3.5	R2
0.4 to 0.5	3.5 to 4.0	R1
>0.5	4.0 to 4.5	NR

Parameter		NIST Model (Bentz et al., 2007)	GEMS Modelling (Lothenbach., 2008)	Extraction Technique	
Over	Overall Approach Empirical Thermodynamic model				
Soluble	Cement & Silica Fume		Accurate estimation of soluble alkali from both cement and fly ashes		
Alkali from	Fly Ash (FA)	75% of Bulk Alkali		 Restricted to early ages (7-14 days) No standardized 	
Pros and Cons		 Rapid approach Overestimation of PSA for FA mixes 	 Accurate & Reliable Complex and not suitable for practical applications 	procedure	

Our Alternative Approach to Determine Pore Solution Alkalinity (PSA)



TTI-Model-1 estimates:

Early age PSA = Water soluble alkali (WSA) from cement + WSA from fly ash (immediate release mainly from crystalline soluble alkali sulfate phases)

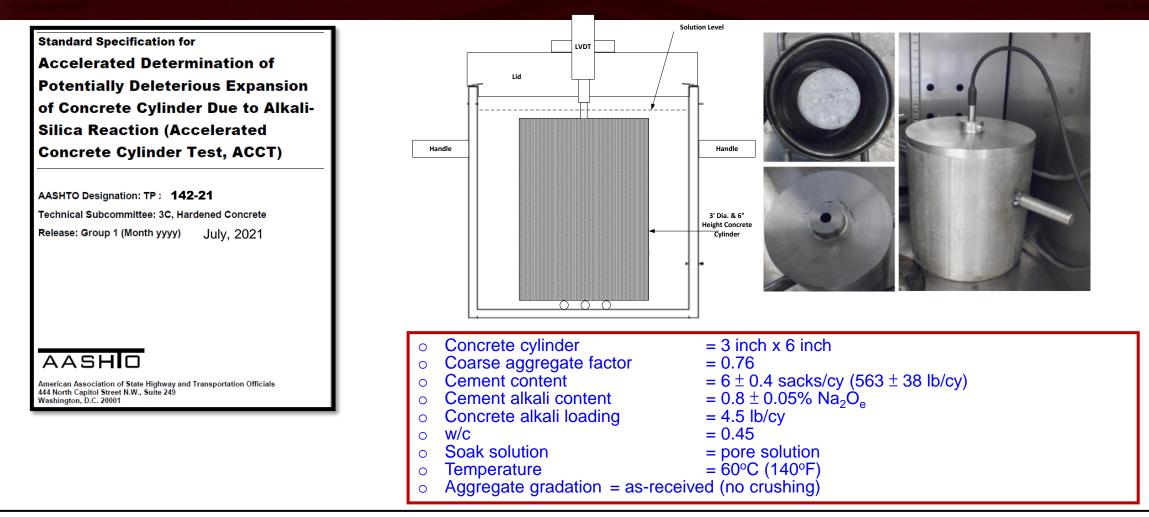
Saraswatula, P., A. Mukhopadhyay, and K.-W. Liu. Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali Silica Reaction in Concrete. Transportation Research Record: Journal of the Transportation Research Board, 2022

Validation of our PSA Estimation Approach

Saraswatula, P., A. Mukhopadhyay, and K.-W. Liu. Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali Silica Reaction in Concrete. *Transportation Research Record: Journal of the Transportation Research Board*, 2022

Performance Based Approach for Rapid Determination of Optimum Fly Ash Dosages

Step 1: Chemical Screening tool (CST) based estimations of fly ash (FA) content


- 1 day \rightarrow ASTM C 114 mod. test to measure water soluble alkali (WSA) from FA (~ 1-2 hrs./test)
- Instantly \rightarrow Non-Linear Regression model to predict WSA from FA

Step 2: Determine fly ash dosage by ASTM C 1567 \rightarrow 14 Days

Step 3: Comparative assessment between CST vs ASTM C1567

- If the difference in dosage is > 5% (e.g., 6-10%) → Accelerated Concrete cylinder test (ACCT, AASHTO TP 142) validation is mandatory
- If the difference is $< 5\% \rightarrow$ use CST-based replacement level \rightarrow ACCT validation can be considered optional

Accelerated Concrete Cylinder Test (ACCT): ASR Test Method Developed at TTI

• Mukhopadhyay AK, Liu Kai-Wei and Jalal M.," An innovative approach of fly ash characterization and evaluation to prevent ASR, ACI Materials Journal, 2019, Vol. 116, Issue 4, 173-181.

 Liu, Kai-Wei and Mukhopadhyay, A. K., "Accelerated Concrete-Cylinder Test for Alkali–Silica Reaction," Journal of Testing and Evaluation (IF: 0.644) ASTM International, Vol. 44, No. 3, 2015, pp. 1–10.

Effectiveness for Determination of Fly Ash Dosage to Mitigate ASR: Test Methods in ASTM C1778 vs ACCT

	ASTM C1567	ASTM C1293	AASHTO TP142 (ACCT)	
Testing period 14-28 days		2 years	45 days (aggregate reactivity) and 75-90 days (fly ash dosage)	
Alkali Leaching	NO	Yes	No	
Alkali penetration	Yes (high)	NA	None or negligible	
Accelerating effects due to alkali boosting	High, immersing in 1N NaOH	High, 8.9 lbs./cy in the mix	Mild, 4.5 lbs/cy in the mix and soak solution = pore solution	
Effect of soluble alkalis from SCMs	No	No	Yes	
Ability to test job field mixes	No	No	Yes	

Application of the Performance-Based Approach: Dosage Estimation for the Conventional Ashes

Category	Category Description	No. Ashes Belong to a Category	Fly Ash Types
Category 1	CST = ACCT = ASTM C 1567	16 / 25 ≈ 64%	13 – Class F 1 – Class C 1- Blended (50% Class C + 50% Pumice) 1 – Reclaimed
Category 2	CST = ACCT but ASTM C 1567 underestimates	9 / 25 ≈ 36% 5-7% lower for 6 ashes 8-10% for 3 ashes	6 – Class F 2 – Class C 1 – Blended Ash (80% PRB = 20% Lignite)
✤ Several	fly ashes (Class C and F) with C	1293 data (literatures) – g C1293	ood correlation between CST and

Blended Ash 1 (a 50:50 blend of Class C and pumice)

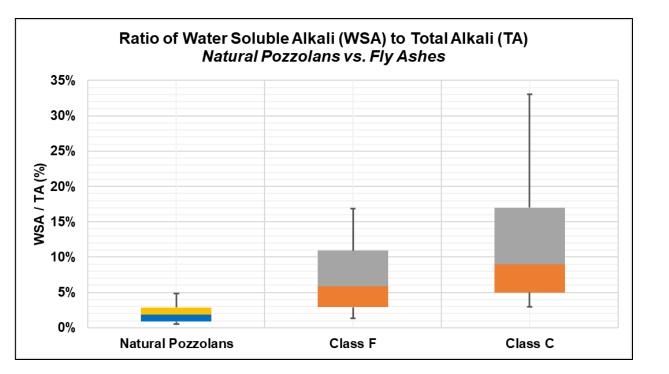
- Satisfies the Class F requirements (C618 criteria)
- CST estimated ~ 40% (behaves like a Class C ash) because of higher WSA which is supported by the ACCT

Blended ash 2 [a blend of PRB (80%) and lignite (20%) coal]

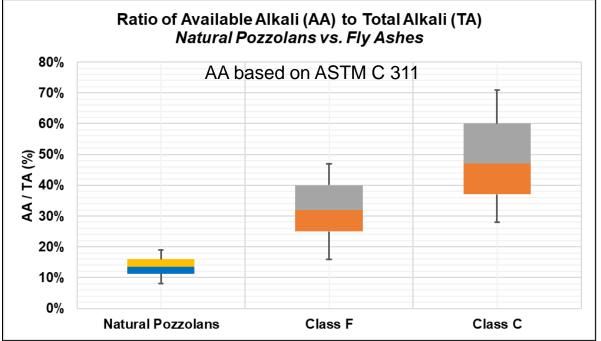
- ✤ Class C ash based on the CaO (18.3%) content
- CST estimated ~ 30% (behaves like a Class F ash) because of lower WSA, supported by the ACCT.

Evaluation of Natural Pozzolans Using the CST-ACCT Based Approach

#	Туре	Class (C618)	SiO2	CaO	AI2O3	Fe2O3	MgO	SO3	Na2O	K2O	Na2Oeq
N1	Pumice	N	58.9	11.5	17.2	6.1	2.3	0.6	2.1	1.3	2.98
N2	Pumicite	N	75.0	1.1	12.9	2.4	0.4	0.1	3.9	4.3	6.76
N3	Rhylolitice	N	72.7	5.1	13.0	1.2	0.2	0.3	3.6	4.3	6.41
N4	Metakoalin	N	53.2	0.0	45.4	0.8	0.0	0.1	0.3	0.3	0.51
N5	Pumice	N	76.8	0.8	13.0	1.4	0.1	0.1	2.8	5.0	6.11
N6	Unknown	N	73.8	1.8	14.2	2.0	1.0	0.1	2.9	4.2	5.71
N7	Unknown	N	75.4	0.2	22.2	1.7	0.0	0.2	0.1	0.2	0.24
N8	Tephra	N	76.2	0.2	12.9	1.8	0.0	0.1	4.4	4.5	7.35
N9	Perlite	N	75.8	0.8	13.8	1.1	0.1	0.1	3.7	4.7	6.78
N10	Unknown	N	85.1	2.5	12.7	1.3	0.1	0.1	3.0	4.2	5.77
N11	Unknown	N	78.3	2.4	17.0	1.2	0.1	0.1	2.8	3.9	5.41
N12	Pumice	N	75.3	1.1	12.5	1.3	0.5	0.1	2.7	5.3	6.17


Natural Pozzolans Evaluation: Quantitative X-Ray Diffraction

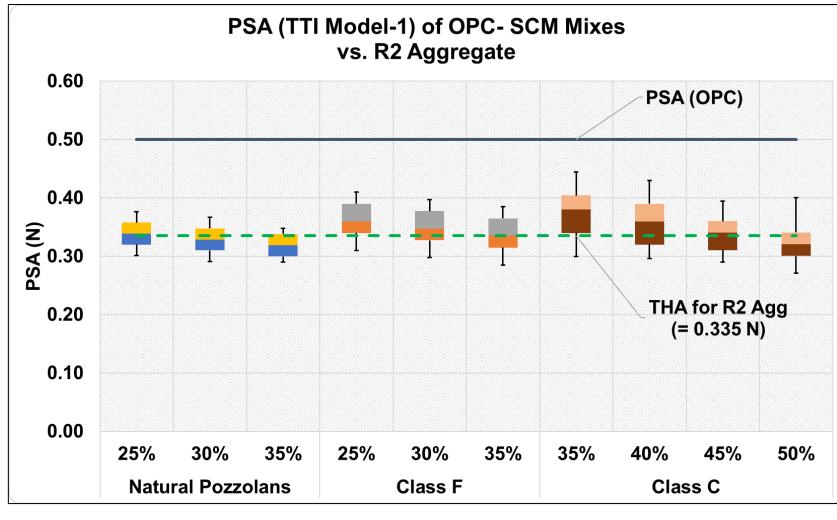
#	Bulk Alkali (Na2Oeq)	Amorphous	L Foldebar	Mica (KAl ₂ (AlSi ₃ O ₁₀)(F,OH) ₂₎	Alkali Sulfates [Thenardite- Na2SO4 & Arcanite- K2SO4]
N1	2.98	39.1			
N2, N3, N5, N6, N8, N9, N10, N11, N12	5.41 – 7.35	67.0 – 93.0	4.0 - 25.0	1.0-11.0	0.2 - 1.7
N4	0.51	91.1		1.0	1.0
N7	0.24	48.5		1.0	1.2


Soluble Alkali Contribution: NPs vs Class F vs Class C

	Total bulk alkalis	Bound alkalis		Alkali release into pore solution from		Alkali binding by pozzolanic C-A- S-H with low Ca/Si	Alkali release minus alkali binding = net soluble alkali into pore solution
		Crystalline Phases	Amorphous Phase	Crystalline phases	Amorphous Phase		
NPs	5-7%	 Up to 65% - alkali feldspar and mica (insoluble) Soluble alkali sulfates – Negligible 	35-78%	Negligible		Very effective	Negligible
Class F	1.1-2.0	3-11% (mainly soluble alkali sulfates)	89-97%	3-11%	Released as a function of pozzolanic reaction	Effective	Low
Class C	2.2-5.8	14-17% (mainly soluble alkali sulfates)	83- 95%	14-17%		Less effective	High

Evaluation of Soluble Alkali: Natural Pozzolans vs. Fly Ashes

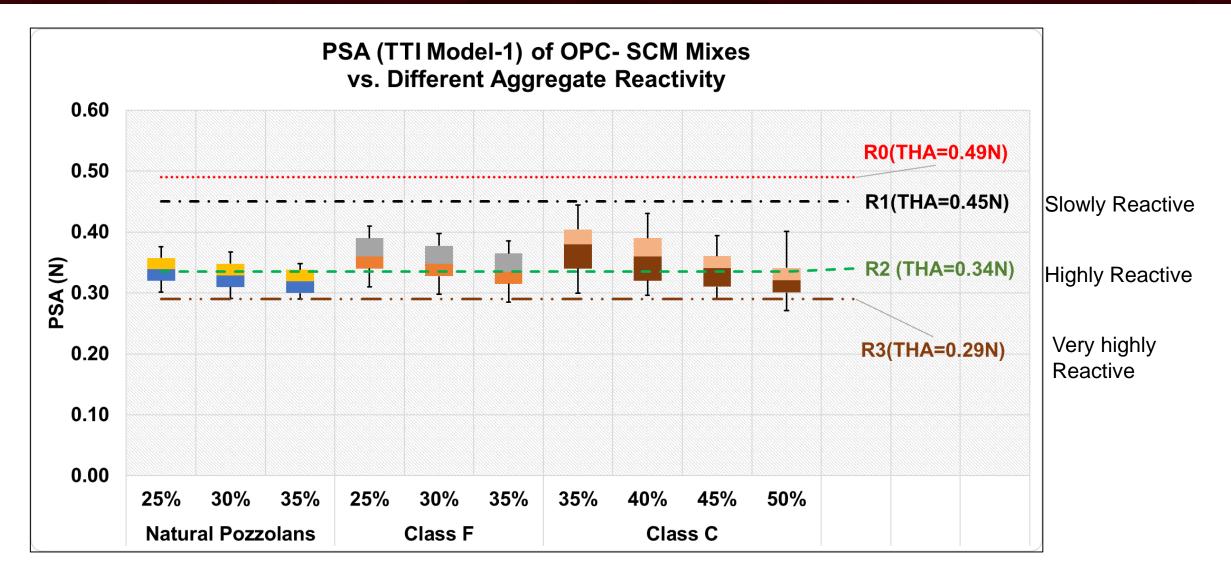
WSA/TA (cluster) Natural pozzolans: 1-3% Class F : 3-11% Class C : 5-17%



AA/TA (cluster) Natural pozzolans: 11-16% Class F: 25-40% Class C: 35-60%

(Mukhopadhyay et al., 2019)

Results: Pore Solution Alkalinity (PSA) Estimation and Dosage Predictions by the CST


Fly Ash Dosage: to mitigate a highly reactive fine aggregate (R2) with THA = 0.335N (Green Dash line)

The dosage that makes PSA < THA is the optimum dosage

- Saraswatula, P., A. Mukhopadhyay, and K.-W. Liu. Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali Silica Reaction in Concrete. Transportation Research Record: Journal of the Transportation Research Board, 2022
- Mukhopadhyay, A. K., Saraswatula, P., & Liu, K. W. (2023). Rapid estimation of natural pozzolan dosages for mitigating ASR using the innovative chemical screening tool (CST). Construction and Building Materials, 408, 133609.

Estimation of SCM Dosages based on SCM Characteristics (Role of SCM to modify PSA) and Aggregate Reactivity

Determination of Fly Ash Dosage: CST vs AMBT vs. ACCT

#	% Fly Ash based on the CST (PSA ≤ THA)	AMBT (ASTM C 1567) 14d-Expansion @ CST %RL	ACCT (AASHTO TP 142) 78d Expansion @ CST %RL
N1	27%	0.07%	0.03%
N2	29%	0.04%	0.01%
N3	28%	0.02%	0.039%
N4	27%	0.04%	0.02%
N5	27%	0.03%	0.01%
N6	27%	0.02%	0.02%
N7	27%	0.02%	0.01%
N8	28%	0.03%	0.01%
N9	28%	0.04%	0.01%
N10	30%	0.04%	0.02%
N11	30%	0.05%	0.03%
N12	30%	0.03%	0.02%

Determination of Other Alternative SCM Dosage: AMBT vs. ACCT

	AMBT (AS	AMBT (ASTM C1567)			
Mix type	%Expansion @14 d	%Expansion @28 d	%Expansion @90d		
30% Ground Glass (GG)	0.14%	0.20%	0.41%		
45% GG	0.08%	0.12%	0.21%		
22% GG + 8% SF	0.07%	0.09%	0.07%		
20% GG + 5% CS	0.08%	0.11%	0.27%		
20% GG + 10% MK	0.07%	0.12%	0.06%		
25% GG + 15% MK	0.05%	0.08%	0.03%		
17% MK + 8% SF	0.08	0.09	0.02		
15% MK + 5% CS	0.10	0.15	0.03		

- Available alkali (AA) based on C311 is very high for GG: CST was not useful
- Concrete made of an R3 coarse aggregate and R1-R2 fine aggregate
- Net Concrete Pore Solution Alkalinity = (Alkali release from cement + Alkali release from GG) alkali binding by pozzolanic
 C-S-H with low Ca/Si

Conclusions

The Application of CST (PSA \leq THA criterion) was validated to determine the dosage of natural pozzolans for ASR mitigation for a highly reactive fine aggregate

- Although the bulk alkali contents of the studied NPs high (Na2Oeq ~ 3 8%), their soluble alkali contribution to pore solution was found to be low
- The WSA trend matches the estimated dosages
 - ➢ WSA: natural pozzolans < Class F ashes < Class C fly ashes</p>
 - Dosage: 25-30% for NPs < ~ 35% for Class F < 45-50% for Class F</p>
- CST predictions for optimum dosage for ASR mitigation for all the studied NPs were favorably validated by both ACCT (AASHTO TP 142) and AMBT (ASTM C 1567) ASR tests.
 - ➤ ASTM C1567 is not recommended when the Na2Oeq of any SCMs ≥4.5% Because of low WSA & AA for the NPs, AMBT provided acceptable results

Conclusions

A combined approach of CST and ACCT with judicious use of AMBT can reliably be used to determine optimum NPs dosage quickly and thus, save time and money and increase reliability while promoting making ASR resistant concrete using locally available natural pozzolans.

Testing wide varieties of NPs to validate the robustness of the CST method is needed – Under progress

Texas Department of Transportation (TxDOT) American Coal Ash Association Educational Foundation (ACAAEF) United States Bureau of Reclamation Los Alamos National Laboratory Natural Pozzolan Associations FAA / IPRF