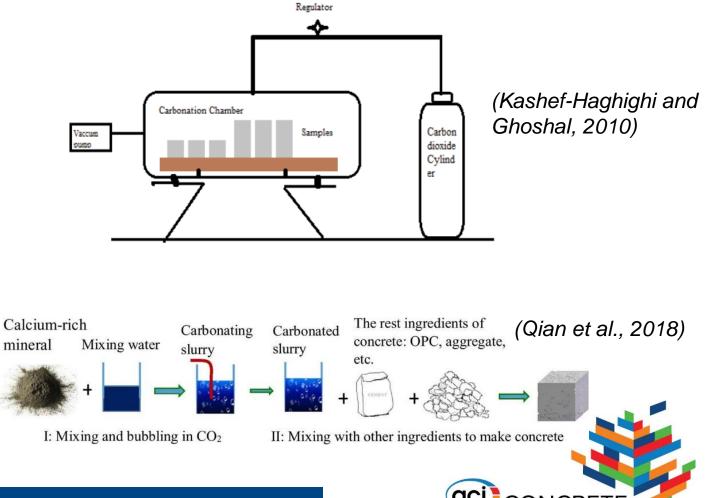
Mortars with recycled CO₂

Alessandro P. Fantilli

Outline

- Significance
- Tests on cement-based pastes with CO₂
 - Maximum absorption capacity
- Tests on cement-based mortars with CO₂
 Mechanical properties and statistical analysis
- Conclusions
- Future works

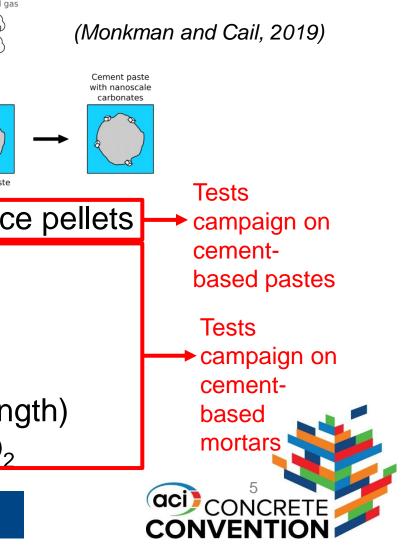
The recycle of CO₂


- In several chemical processes, carbon dioxide CO₂ is produced.
- The recovery and the recycle of CO₂ lead to economic and environmental advantages, because of the reduction of Greenhouse Effect gases emissions in the atmosphere.
- It can be recycled in the cement-based materials, by carbonating the calcium hydroxide:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O_3$$

The carbonation in cementitious systems

- Three approaches
 - Post-carbonation: after casting, concrete manufacts are left in a carbonation chamber exposed to CO₂ for some time (carbonation curing)
 - Pre-carbonation: a mixture of calcium hydroxide is produced by adding CO₂ in a calcium-rich mineral water. Such a mixture is then added to the traditional components of concrete


The carbonation in cementitious systems

Water

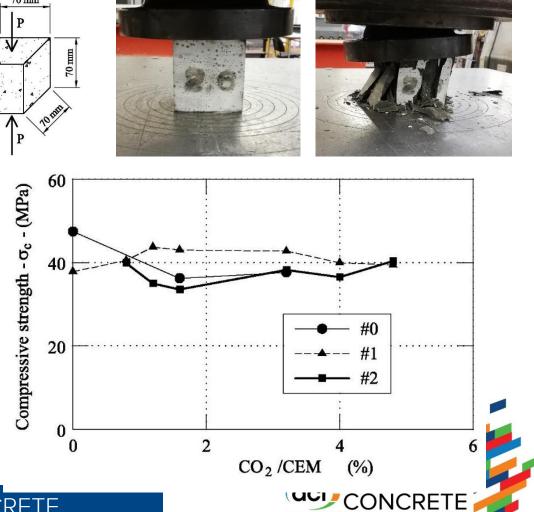
- Three approaches
 - CO₂ as additive: a specific quantity of solid and gasiform CO₂ is progressively added to the cement paste

Significance of a new research

- 1. Measure the content of absorbed CO₂ added with dry ice pellets
- 2. Simplify of the procedure:
 - Not only for concrete
 - CO₂ must be added by unskilled workers
- 3. Analyse other properties
 - Flexural strength (previously only compressive strength)
 - Statistical distribution of strength in presence of CO₂

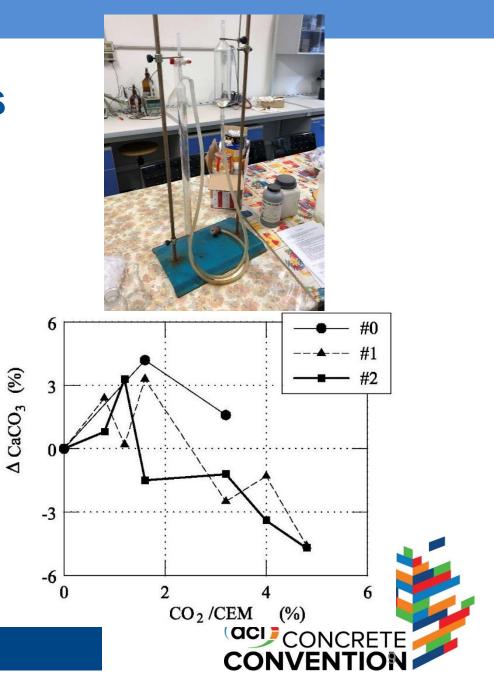
Dry ice pellets

Test on pastes


SRA 155 CO₂ CO₂/Cement Cement Water AC 50 CF Series Specimens (g) (g) (g) (g) (g) (%) Cubes of cement paste 0 #0 1 0 0 0 #0 2 7.20 1.6 $(70 \times 70 \times 70 \text{ mm}^3)$ #0 0 3.2 #0 3 0 14.4 • 3 series (17 pastes) with: 13.5 #1 1 0 0 0 13.5 #1 2 0 3.60 0.8 - dry ice CO₂ #1 3 13.5 0 5.401.2 #1 4 #1 13.5 0 7.20 1.6 -CEM | 42.513.5 #1 5 0 14.4 3.2 - water/cement =0.5 #1 6 225 13.5 0 18.0 4.013.5 0 21.6 #1_7 4.8 - hardening accelerator 31.5 0 0 0 #2 #2 2 0 31.5 3.60 0.8 - CaO expansive additive #2 3 1.2 31.5 5.40 0 Hardening accelerator (3% the mass of cement) #2_4 0 31.5 7.20 1.6 #2_5 0 31.5 3.2 14.4#2 4.0 0 31.5 18.0 Expansive CaO-based agent (7% the mass of cement) #2_7 4.8 0 31.5 21.6 aci CONCRETE THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Test on pastes

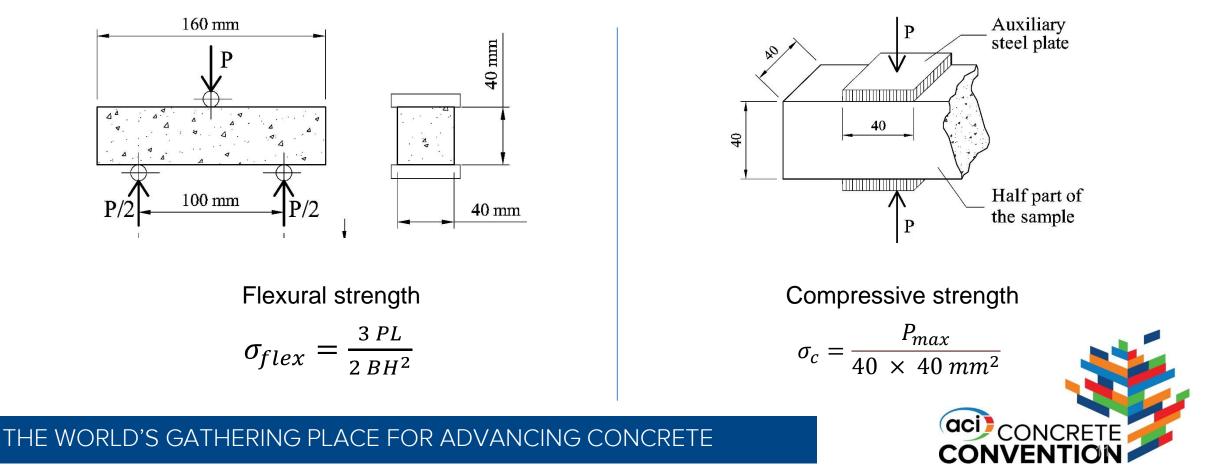
- Uniaxial compression tests on cubes after 28 days
- Evaluation of compressive strength

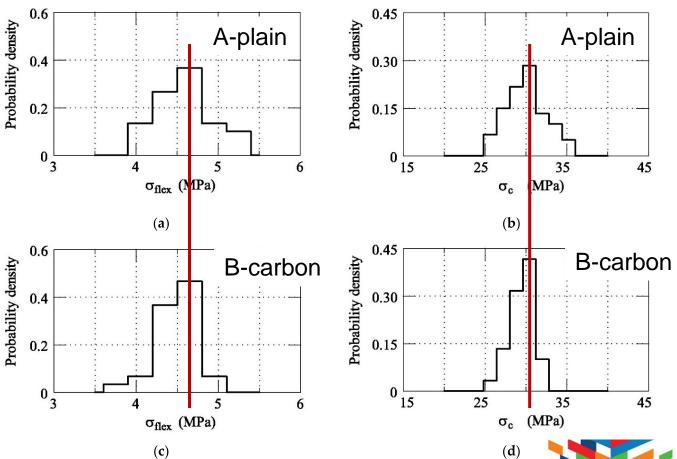

 $\sigma_c = \frac{P_{max}}{70 \times 70 \ mm^2}$

- Compressive strength does not vary significatively with the addition of carbon dioxide
- σ_c is more or less equal to that of cement (i.e., 42.5 MPa), regardless of the ratio CO₂/CEM
- The presence of additives does not modify this trend

Test on pastes

- Calcimetry test is used to measure the percentage of CaCO₃, which is a function of the carbon dioxide added to the mixture (or the ratio CO₂/CEM)
- The maximum increment of CaCO₃ with respect to the paste without additives is obtained when CO₂/CEM=1.6%
- Further increments of CO₂ are not absorbed by the concrete system
- The decrement of $\triangle CaCO_3$ when $CO_2/CEM > 1.6\%$, is probably due to the reduction of the temperature produced by the dry ice pellets


- UNI EN 196-1
- Prisms of cement mortar (40 \times 40 \times 160 mm³)
- 2 series (of 30 prisms) with:
 - water/cement =0.5
 - Standard sand
 - Addition of dry ice pellets
 - CO₂ /CEM =1.6% (the maximum)
 - No other additives


CO₂/Cem Water CO_2 Cement Sand Series (g) (g) (g) (g) (%) A-Plain 2250 4500 13500 0 **B-Carbon** 4500 2250 13500 72

• Three-point bending tests and uniaxial compression tests

- Probability density of both flexural and compressive strength
- The modal value is the same
- The distribution around the modal value is larger in the mortars A-plain (without the presence of CO₂ in the mixture)

- Referring to the gaussian distribution, the average values μ of both the strengths does not vary with and without CO_2
- The addition of CO₂ produced a reduction of standard deviation δ (22 % for σ_{flex} and 35 % for σ_{c}). In the tests performed by Monkman and Cail (2019) on concrete in compression, δ reduced of 25%.
- F-test on σ_c demonstrates that A-plain and B-carbon are two different systems

Mechanical property	σflex		σι	
Type of mortar	A-plain	B-carbon	A-plain	B-carbon
μ (MPa)	4.59	4.48	30.0	29.4
δ (MPa)	0.319	0.250	2.40	1.53
Degree of freedom	29		59	
F-test	$F = 1.63 < f_{0.05} = 1.86$		$F = 2.44 < f_{0.05} = 1.54$	
Equal variances	Yes		No	
				(

Conclusions

- 1. Cement-based mortars can absorb CO_2 in the form of dry ice pellets
- 2. The maximum absorption capacity is CO_2 /CEM =1.6%, which is similar to those already measured by other researchers
- 3. Such a content of CO_2 does not modify the average values of flexural strengths (and pH as well)
- 4. However, the scatter of the strength (or the standard deviation) with respect to the average value remarkably reduces when CO_2 is added

Thus, by recycling CO₂ the quality of cementitious mortars improves

Future works

- 1. Use different cements
- 2. Application to concrete
- 3. Addition of CO_2 made with ¹³C

