Effect of Tensile Strain Capacity of UHPC on the **Bond with Steel Reinforcement**

ACI Convention- Fall 2021

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Amr A. Soliman

Ph.D. Candidate amrashra@buffalo.edu

University at Buffalo

Department of Civil, Structural and Environmental Engineering School of Engineering and Applied Sciences

Ravi Ranade

Associate Professor ranade@buffalo.edu

Ultra-High Performance Concrete

- Compressive strength of at least 150 MPa (22 ksi) (ACI 239)
 - w/c = 0.15 0.25
 - Dense particle packing
 - High durability
- Steel or polymer fibers are typically used
- High tensile strength of at least 6 MPa (ACI 239), and high flexural toughness

Ultra-High Performance Concrete

Two types of UHPC are used:

• UHPC with smooth straight steel fibers (SF-UHPC)

Ultra-High Performance Concrete

Two types of UHPC are used:

- UHPC with smooth straight steel fibers (SF-UHPC)
- UHPC with polyethylene fibers (PE-UHPC)

Bond transfer mechanism

Factors controlling bond failure

Effect of fibers contribution in UHPC

- Lagier et al 2015, Roy et al 2017, and Elkaysi and Eltawil 2017 found that an increase in fiber content leads to linear increase in the bond strength.
- Roy et al 2017 found that the number of cracks increases due to fiber bridging as the fiber volume fraction increases.

Ref: Roy et al 2017

Effect of tensile Properties of FRC

- Chao et al 2009: The use of tensile strain-hardening FRC composites led to better bar bond performance.
- The use of strain hardening composites with only 2% fibers led to higher bond strength compared to SIFCON with 9.7% fibers.

Ref: Chao et al 2009

Experimental parameters

Material properties

- SF-UHPC
- f_c '= 151 MPa f_t = 7.4 Mpa ϵ_u = 0.2%
- PE-UHPC
- f_c '= 119 MPa f_t = 6.1 Mpa ϵ_u = 6.6%

Test matrix

Cover	Embedment length
1.5 d _b	3 d _b
	4 d _b
	6 d _b
	8 d _b
$2.5 d_b$	2 d _b
	3 d _b
	4 d _b
	6 d _b

Test setup

Rebar pullout test setup

Results: Bond strength variation with cover depth and embedment length

- Bond strength increases linearly with increase in development length, with average R² value of 0.95.
- Bond strength in PE-UHPC is on average 30% lower than the bond strength in SF-UHPC

Results: Rebar pullout curves (Cover = $1.5 d_b$)

Results: Rebar pullout curves (Cover = $2.5 d_b$)

Results: Energy dissipation

Slip (mm)

Normalized energy dissipation (kN.mm/kN)

Cover	Embedment length	SF-UHPC	PE-UHPC
1.5 d _b	3 d _b	2.71	2.65
	4 d _b	2.56	2.91
	6 d _b	2.71	2.92
	8 d _b	2.17	3.26
2.5 d _b	2 d _b	2.17	1.56
	3 d _b	3.77	2.41
	4 d _b	3.8	2.27
	6 d _b	4.11	2.63

- PE-UHPC dissipates on average 17% higher energy than SF-UHPC for specimens with cover= 1.5 d_b
- SF-UHPC dissipates higher energy in specimens with cover= 2.5 d_b due to rebar yielding

Failure mode (Cover= $2.5 d_b$)

SF-UHPC

 $L_d = 3 d_b$

 $L_d = 4 d_b$

 $L_d = 6 d_b$

Predicted bond strength

• Orangum et al 1977 (ACI 318)

$$U_{c} = \left(1.2 + 3 * \frac{C}{d_{b}} + 50 * \frac{d_{b}}{l_{d}}\right) * \sqrt{f'_{c}}$$

• ACI 408-03

$$T_c = (59.9 * l_d * (C + 0.5 * d_b) + 2400 * A_b) * 1.25 * f'_c^{1/4}$$

 $(T_{test}/T_{Orangum})_{PE-UHPC} = 1.08$

 $(T_{test}/T_{ACI 408})_{PE-UHPC} = 1.00$

Conclusions

- The reinforcement-UHPC bond strength increases linearly with increase in the embedment length.
- The bond strength increases by increasing cover thickness, and the failure mode changes from splitting cracks to rebar pullout in the specimens with high tensile strength and short embedment length.
- PE-UHPC showed higher energy dissipation and hardening behavior due to the formation of multiple cracking.
- Despite the high strain capacity of PE-UHPC, it showed on average 30% lower bond strength than SF-UHPC.
- The bond strength calculated following ACI 408 showed better prediction than ACI 318 compared to test results.

Thank you! Questions?