

American Concrete Institute

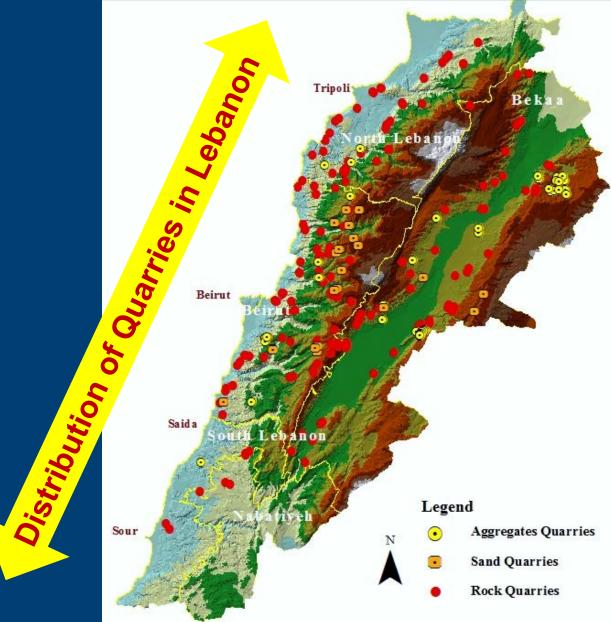
EFFECT OF SHEAR SPAN TO DEPTH RATIO ON THE BEHAVIOR OF RAC BEAMS

Nariman J. Khalil, Ph.D. Department of Civil & Environmental Engineering University of Balamand Lebanon

Virtual Technical Presentations OCTOBER 17-21, 2021

ACI Concrete Convention Fall 2021

OUTLINE


Research Motivation > Objectives >Experimental Program Test Beams Materials & Mix Design Instrumentation and Test Setup Experimental Results & Discussion Conclusions

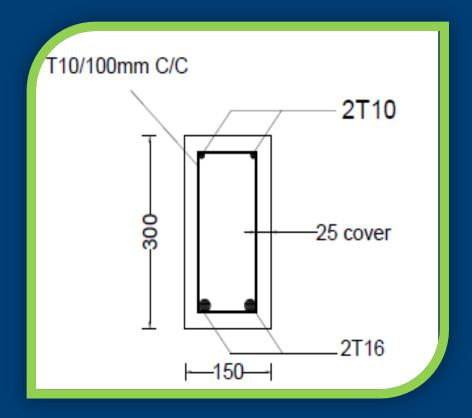
RESEARCH MOTIVATION

Chekka Quarry in the vicinity of UOB

The objective of this research is to study the effect of shear span to depth ratio on the shear behavior of <u>Recycled Aggregates Concrete</u> (RAC) beams.

EXPERIMENTAL PROGRAM

- Nine beams were designed to fail in shear
- Three values for shear span to depth ratio were selected: 2.5, 3.5 and 4.
- Five beams were made with 100% [R100] recycled concrete aggregates [a/d: 2.5, 3.5 and 4].
- Two beams [a/d: 3.5 & 4] were made with 50% [R50] recycled concrete aggregates.
- Two beams [a/d: 3.5 & 4] [R0] were made with natural aggregates.



TEST BEAMS

- All beams were 3 m long with 2.7 m span length
- All beams were reinforced with 2T16 at the bottom and 2T10 at the top giving ρ =1.04%
- Shear reinforcement in the form of vertical stirrups was omitted.
- All beams had the same cross section 150 by 300 mm.
- Variables are: shear span to depth ratio for two levels of coarse aggregates replacement 50% and 100%.
- The beams were subjected to four point loading test.
- Beams' deflection, crack patterns, ultimate shear capacity; and failure modes are all observed and analyzed.

Beams' Cross-Section

MATERIALS AND MIX PROPORTIONS

- The recycled concrete aggregates were obtained by crushing the control specimens tested at UOB civil engineering laboratory.
- All coarse aggregates were sieved into two sizes: coarse (9.5–19 mm) and medium (4.75–9.5 mm).
- Table 1 summarizes the test results on the physical properties of natural and recycled aggregates.

TABLE 1: PHYSICAL PROPERTIES OF NATURAL AND
RECYCLED AGGREGATES

Aggregates	NCA (4.75-9.5) mm	RCA (4.75-9.5) mm	NCA (9.5-19) mm	RCA (9.5-19) mm
SSD (Saturated Surface Dry)	2.654	2.415	2.676	2.290
Apparent SG	2.706	2.688	2.713	2.457
OD (Oven-Dry) SG	2.623	2.253	2.653	2.175
Absorption (%)	1.171	7.189	0.835	5.273
Bulk density kg/m ³	1525	1305	1552	1359

MIX DESIGN

- Table 2 illustrates the mix design used throughout this study.
- Only coarse aggregates were replaced by recycled concrete aggregates.
- > All constituent materials were oven dried for 24 hours before casting at 110 ± 5 °C.
- The water compensation method was used.

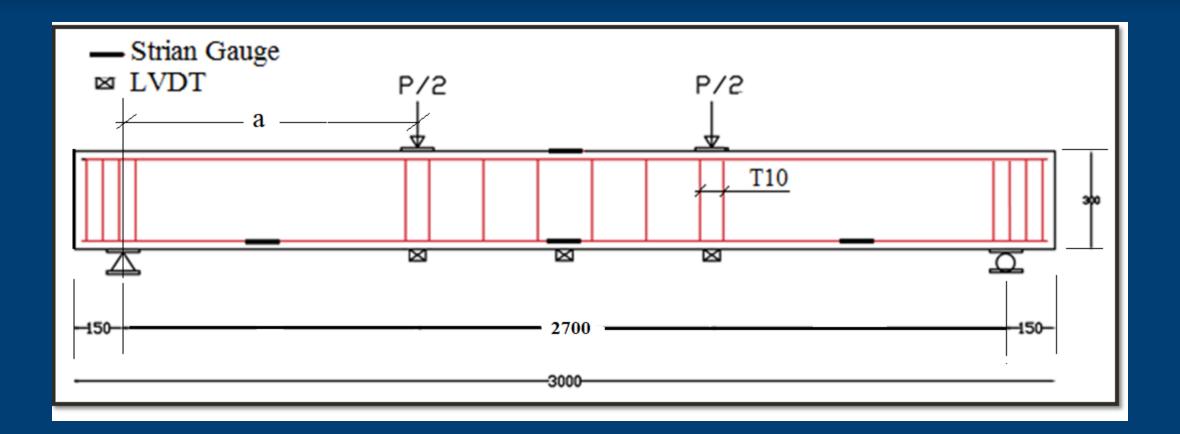


TABLE 2: Mix design

		NCA	NCA	RCA	RCA	Natural	Free
Mix	Cement	4.75-9.5 mm	9.5-19 mm	4.75-9.5 mm	9.5-19 mm	sand	water
	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)	(kg/m³)
R0	350	444	666	0	0	741	178
R50	350	222	333	207	393	741	178
R100	350	0	0	400	610	741	178

INSTRUMENTATION AND TEST SETUP

EXPERIMENTAL RESULTS AND DISCUSSION

MECHANICAL PROPERTIES

Beam	RCA %	a/d	f'_c (MPa)	Ec (MPa)	fsp (MPa)	fr (MPa)
B1	100	2.5	37.65	25663	3.31	3.34
	100	2.0	07.00	20000	0.01	0.04
B2	100	3.5	35.55	29,426	3.87	3.07
B 3	100	3.5	33.22	22729	2.43	3.95
B 4	100	4	27.72	26452	2.86	3.03
B5	100	4	25.36	29426	2.92	4.17

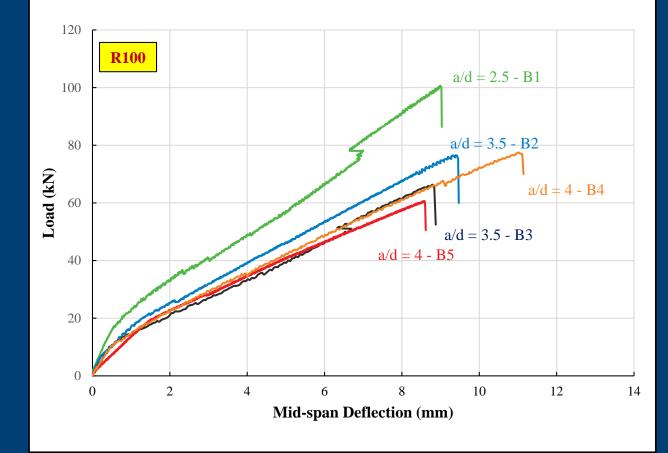
MECHANICAL PROPERTIES

Beam	RCA %	a/d	f ' _c		fsp	fr (MD-)
			(MPa)	(MPa)	(MPa)	(MPa)
B6	50	3.5	37	32521	3.66	3.07
B7	50	4	41.53	32521	3.87	5.18
B8	0	3.5	31.61	32486	3.9	3.97
B 9	0	4	38.25	32486	3.79	5.11

LOAD VS MID-SPAN DEFLECTIONS

R50 R0 a/d = 4 - B7Load (kN) Load (kN) a/d = 3.5 - B6a/d = 4 - B9a/d = 3.5 - B8**Mid-span Deflection (mm) Mid-span Deflection (mm)**

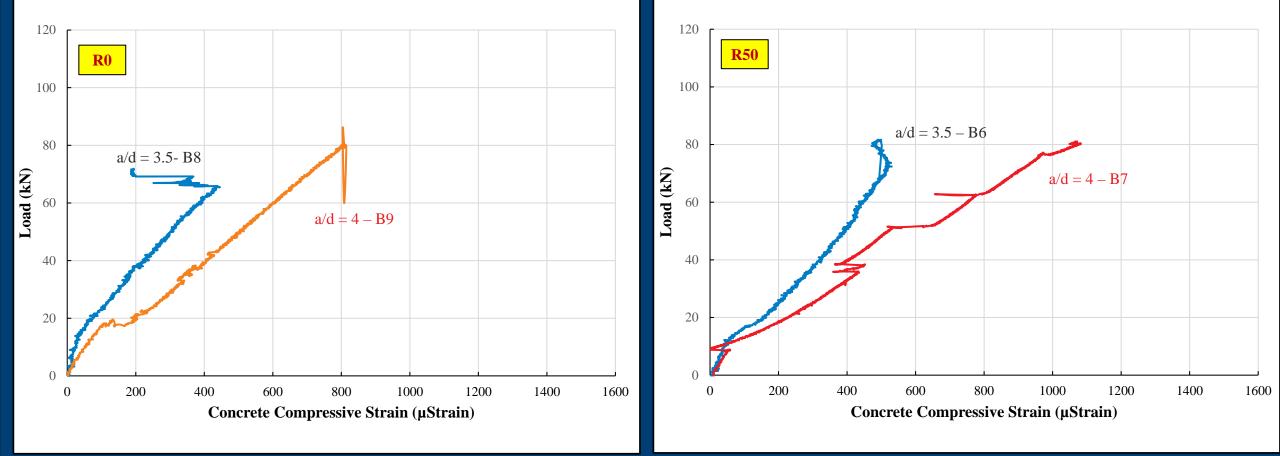
Load Vs. Mid Span Deflection



LOAD VS MID-SPAN DEFLECTIONS

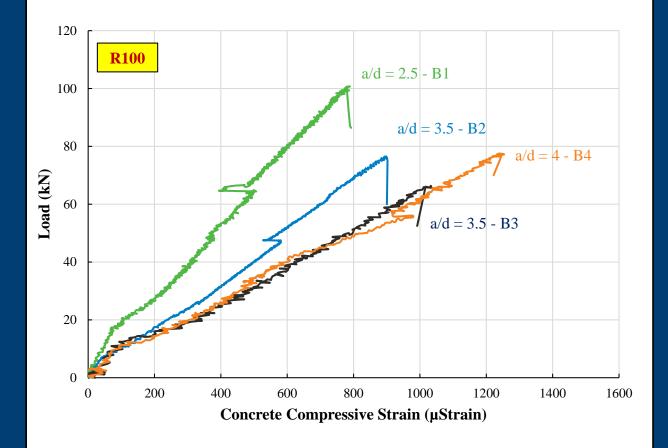
R100

- For (a/d=3.5) an average increase of 37% was observed in mid-span deflection when compared to (a/d=2.5).
- For (a/d=4) the increase reaches 53%.


Load Vs. Mid Span Deflection

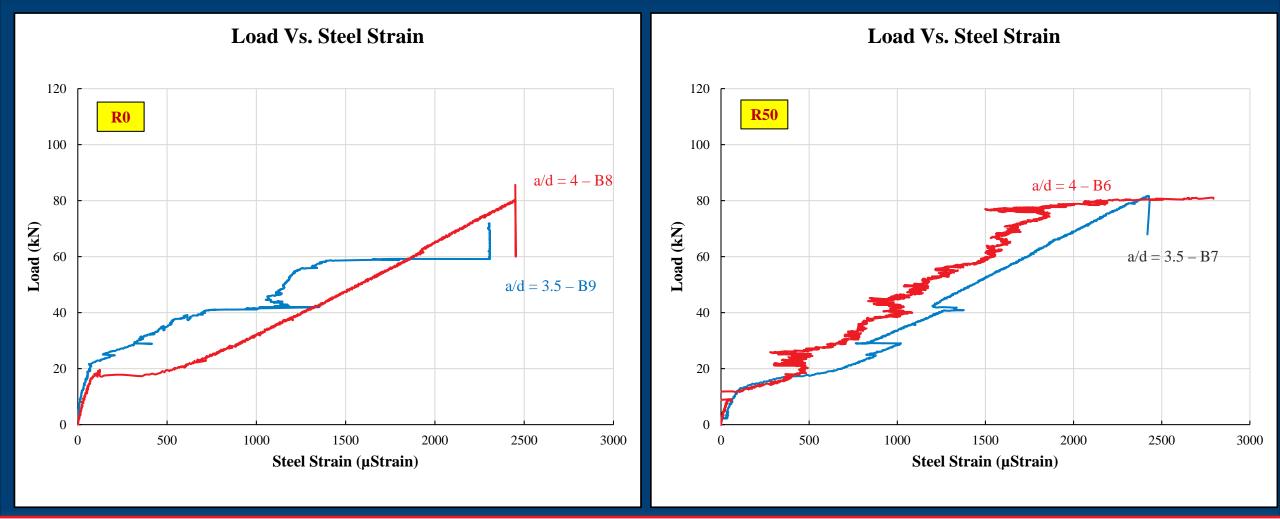
LOAD VS. CONCRETE COMPRESSION STRAINS

Load Vs. Concrete Compressive Strain


Load Vs. Concrete Compressive Strain

LOAD VS. CONCRETE COMPRESSION STRAINS

R100

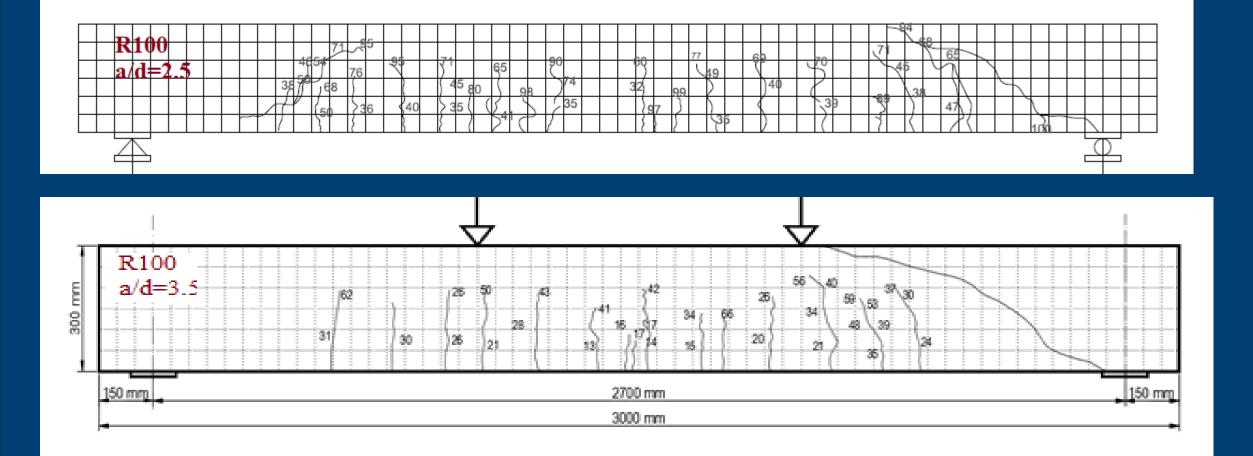

- For (a/d=3.5) an average increase of 85% was observed in concrete compressive strains when compared to (a/d=2.5).
- For (a/d=4) the increase reaches 123%.

Load Vs. Concrete Compressive Strain

LOAD VS. STEEL STRAINS

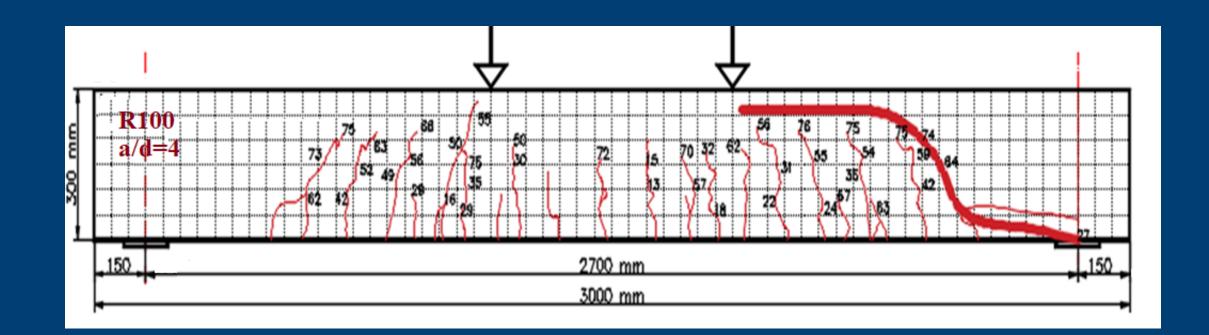
LOAD VS. STEEL STRAINS

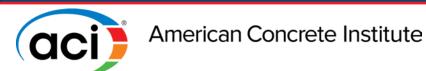
R100


- For (a/d=3.5) an average increase of 26% was observed in steel strains when compared to (a/d=2.5).
- For (a/d=4) the increase reaches 61%.

120 a/d = 2.5 - B1**R100** 100 a/d = 3.5 - B2a/d = 3.5 - B380 Load (kN) a/d = 4 - B460 a/d = 4 - B540 20 1000 500 1500 2000 2500 3000 Steel Strain (µStrain)

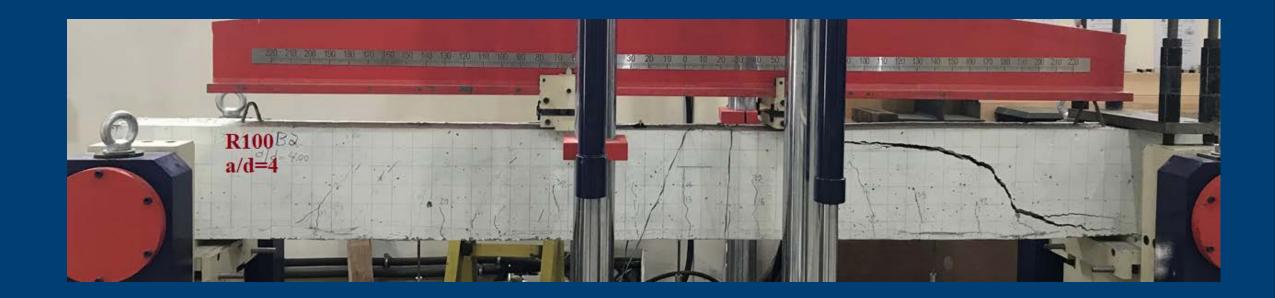
Load Vs. Steel Strain

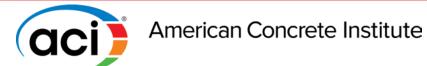



CRACK PATTERN

CRACK PATTERN

FAILURE MODE

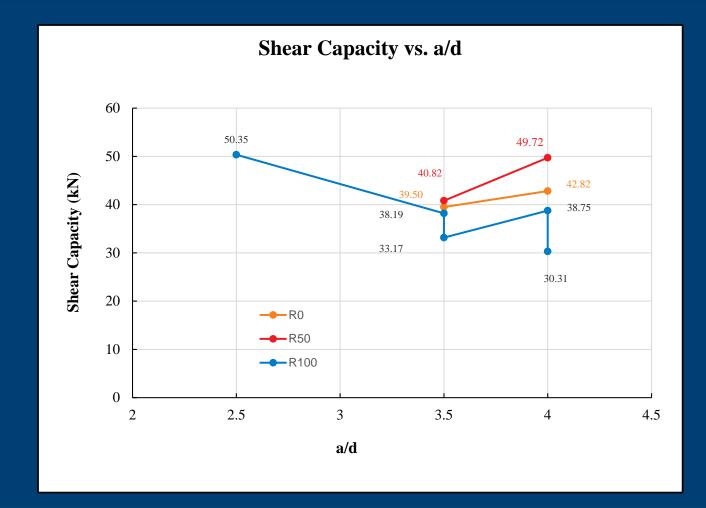



FAILURE MODE

FAILURE MODE


SHEAR CAPACITY

Beam	RCA %	a/d	V _{test} kN	V _{ACI} kN	V _{test} /V _{ACI}
B1	100	2.5	50.35	40.52	1.24
B2	100	3.5	38.19	40.11	0.95
B 3	100	3.5	33.17	37.85	0.88
B 4	100	4	38.75	40.28	0.96
B5	100	4	30.31	33.88	0.89



SHEAR CAPACITY

Beam	RCA %	a/d	V _{test} kN	V _{ACI} kN	V _{test} /V _{ACI}
B6	50	3.5	40.82	40.92	1.00
B7	50	4	49.72	43.32	1.15
B 8	0	3.5	39.50	38.56	1.02
B 9	0	4	42.82	41.63	1.03

SHEAR CAPACITY vs a/d RATIO

CONCLUSIONS

- For R0 and R50, deflections were of comparable values.
- For R100 series, deflections increase as (a/d) ratio increases.
- For all replacement ratios, concrete compression strains increase as (a/d) ratio increases.
- Overall, crack patterns and failure modes of RAC beams were similar to those of CC beams.

CONCLUSIONS

- For R100 series, shear strength decreases as (a/d) increases, while for R0 and R50, the opposite was observed.
- Although ACI provision for shear strength prediction tends to be adequate for CC beams, it overestimates the shear strength for R100 as (a/d) increases.

Thank you

Email: Nariman.Khalil@balamand.edu.lb

