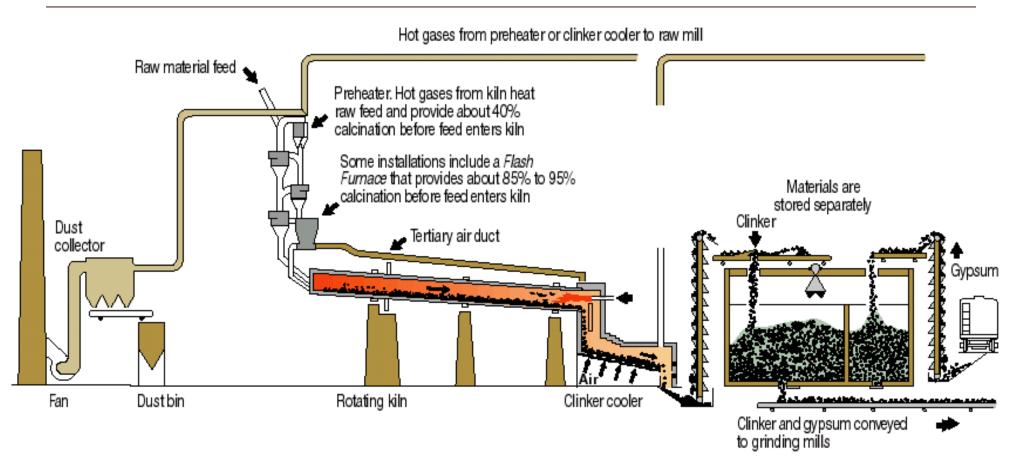

## **Strategies for Reducing CO<sub>2</sub> Emissions at Cement Plants**

Ken Kazanis Technical Manager LafargeHolcim





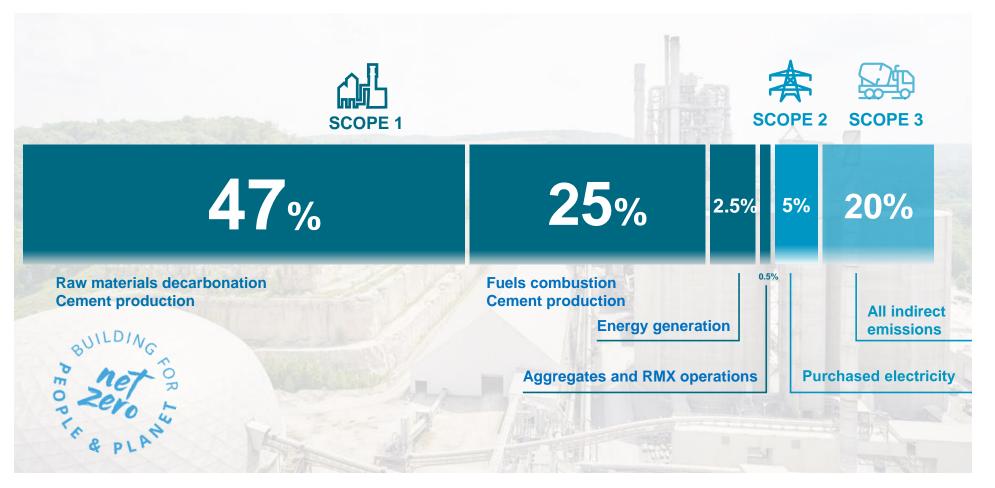



### **Sources of CO**<sub>2</sub>

 Cement industry generates ~ 5% to ~ 8% of all CO<sub>2</sub> generated in the world

#### • Most CO<sub>2</sub> originates from kiln operations:

- Fuel for the kiln, normally coal or petcoke
- Calcination of CaCO<sub>3</sub> (limestone)


 $CaCO_3$  + heat =>  $CaO + CO_2$  $CaO + SiO_2$  + heat =>  $C_2S + C_3S$  (clinker)



Kiln Operations in a preheater/precalciner plant Most CO<sub>2</sub> originates from kiln operations

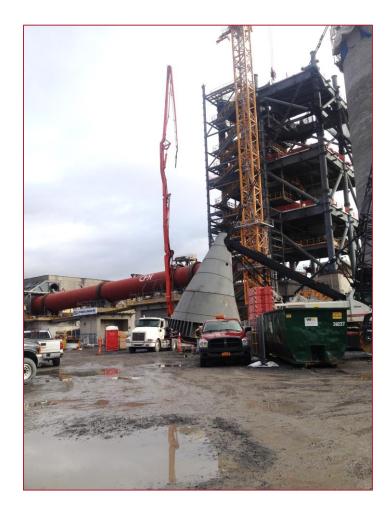


## LafargeHolcim CO<sub>2</sub> footprint (company-wide)



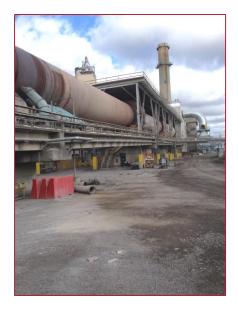
## LafargeHolcim CO<sub>2</sub> footprint

#### **Definitions of Scopes 1, 2, 3**


- Scope #1- ~75% of total
  - Raw material decarbonization for cement production
  - Fuel combustion for cement production
  - Generation of electricity
  - Aggregates & RMX operations
- Scope #2 ~5% of total
  - Purchased electricity
- Scope #3 ~20% of total
  - Extraction of purchased materials
  - Production of purchased materials and fuel
  - Transportation

## **Measuring CO<sub>2</sub>**

- PCRs & EPDs
  - Product Category Rules industry rules that establish <u>how</u> to measure environmental impact
  - Environmental Product Declaration environmental impact of product as measured by the PCRs
- For cements, Global Warming Potential (GWP) is the main EPD measurement in kg of CO<sub>2</sub> per metric ton of cement
  - U.S. industry average for Type I/II is 922 kg CO<sub>2</sub> / mt
  - U.S. industry average for Type IL is 846 kg CO<sub>2</sub> / mt


#### Five Main Strategies

- 1. More efficient cement plants
- 2. Reduction of purchased electricity
- **3.** Lower CO<sub>2</sub> fuels and waste derived fuels
- 4. Less clinker in cements
- 5. Carbon capture utilization & storage (CCUS)



#### **Strategy #1 - More Efficient Plants**

- Preheaters / Precalciners vs long, dry or wet kilns
  - GWP of long, dry kiln (no preheater/precalciner) ~ 1000 kg CO<sub>2</sub> / mt
  - GWP of new, preheater/precalciner kiln ~ 750 kg  $CO_2$  / mt



Long, dry kiln



Preheater/precalciner kiln

#### **Strategy #2 - Reduction of purchased electricity**



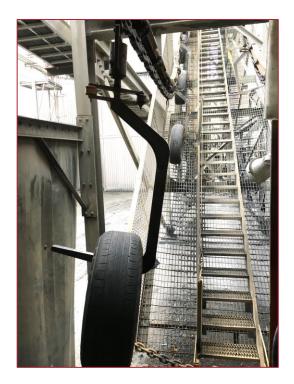
Solar Panels at Hagerstown, MD

© LafargeHolcim 2021

11

LafargeHolcim Presentation title, Month 00, 2015

#### Strategy #3 - Lower CO<sub>2</sub> Fuels & Waste-Derived Fuels


- Use of natural gas vs coal & petcoke in the kilns
  - Natural gas reduces CO<sub>2</sub> by ~40% compared to coal

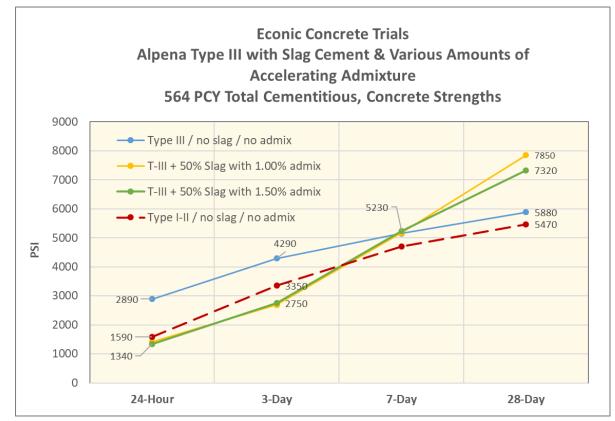
Ravena Plant in NY uses natural gas as a fuel (summer months only)



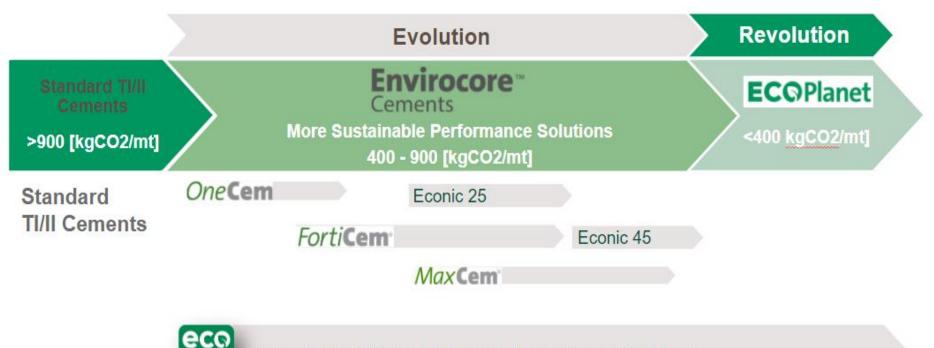
#### Strategy #3 - Lower CO<sub>2</sub> Fuels & Waste-Derived Fuels

- Waste Derived Fuels use of liquids, plastics, tires, construction waste, etc.
  - Saves CO<sub>2</sub> if material is normally disposed by incineration
  - LEED does not give credit for waste-derived fuels
  - Paulding, OH burns 80% 90% liquid waste-derived fuels
  - Whitehall, PA burns tires and plastics
  - Holly Hill, SC burns liquid waste-derived fuels




#### **Strategy #4 - Less Clinker in the Cement**

- Supplementary Cementitious Materials (SCMs) and ground limestone can be used to replace the clinker portion of a cement
  - ASTM C595 Blended Cements
    - Type IS using slag cement (up to 70%)
    - Type IP using fly ash, silica fume or natural pozzolans (up to 40%)
    - Type IL using ground limestone (up to 15%)
    - Type IT using any 2 of the above



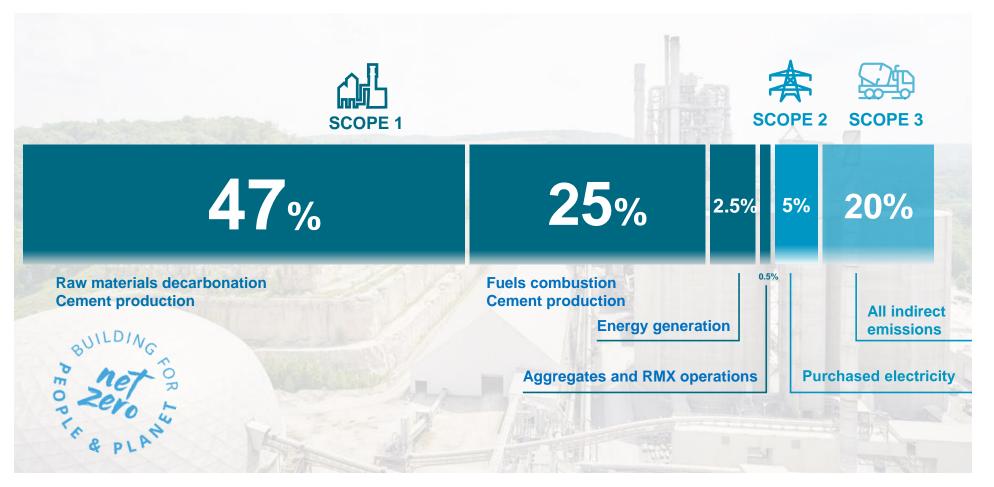

#### Less Clinker

 Project specifications for cement and concrete need to be more informed & focused on <u>blended cements</u>



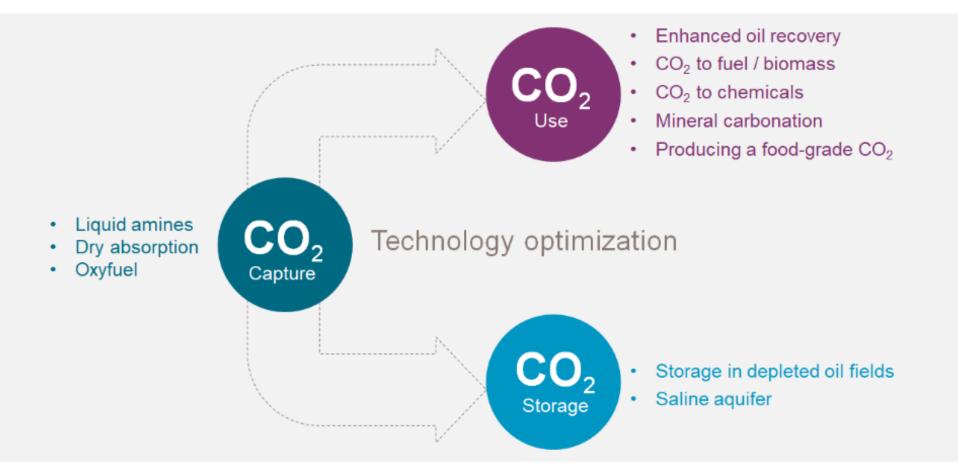
#### **EcoPlanet** Product Branding




Utilized only for those products that meet Group requirements

Baseline kgCO2/ton = average US GWP (across US plants as determined by EPDs)

Products meeting the eco label -30 are those that fall 30% below baseline


-30%

## LafargeHolcim CO<sub>2</sub> footprint (company-wide)



# Strategy #5 - Carbon Capture Utilization & Storage (CCUS)

- CCUS captures CO<sub>2</sub> emissions from sources and either reuses or stores it (sequestration) so it doesn't enter the atmosphere
- LH views CCUS as one of the core developing technologies to achieve Net Zero emissions, but is <u>not</u> <u>sizeable or economical to fully implement today</u>
  - LH is currently spearheading over 20 projects in the US, Canada, and Europe





LafargeHolcim worldwide average targets for cement GWP (all products)

- 2022: 550 kg CO<sub>2</sub>/mt
- 2030: 475 kg CO<sub>2</sub>/mt



## Questions & Comments?

#### **Estimated Carbon Dioxide Emissions (Statista)**

| Year           | U.S. Emissions in millions of metric tons of CO <sub>2</sub> | Average CO <sub>2</sub> Concentrations,<br>NOAA-ESRL Mauna Loa Observatory |  |
|----------------|--------------------------------------------------------------|----------------------------------------------------------------------------|--|
| 2020           | 4,571(4.57B) mt                                              | 419 ppm (May)                                                              |  |
| 2019           | 5,138                                                        | 411                                                                        |  |
| 2018           | 5,276                                                        | 408                                                                        |  |
| 2017           | 5,131                                                        | 407                                                                        |  |
| 2016           | 5,171                                                        | 404                                                                        |  |
| 2015           | 5,263                                                        | 399                                                                        |  |
| 2014           | 5,413                                                        | 397                                                                        |  |
| 2013           | 5,356                                                        | 395                                                                        |  |
| 2012           | 5,229                                                        | 393                                                                        |  |
|                |                                                              |                                                                            |  |
| 1990           | 5,040                                                        | 354                                                                        |  |
| Pre-industrial |                                                              | 278                                                                        |  |

22

 Total Estimated Annual CO2 Emissions by Country -Union of Concerned Scientists (based on 2018 data)

| 1. | China                     | 10.06 GT | ~30% |
|----|---------------------------|----------|------|
| 2. | U.S.                      | 5.41 GT  | ~15% |
| 3. | India                     | 2.65 GT  | ~ 6% |
| 4. | <b>Russian Federation</b> | 1.71 GT  |      |
| 5. | Japan                     | 1.16 GT  |      |
| 6. | Germany                   | 0.75 GT  |      |
| 7. | Iran                      | 0.72 GT  |      |
| 8. | South Korea               | 0.65 GT  |      |

- A research team, led by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration with Northern Illinois University, has discovered a new electrocatalyst that converts carbon dioxide (CO<sub>2</sub>) and water into ethanol
  - very high energy efficiency
  - high selectivity for the desired final product
  - low cost.
- Ethanol is a particularly desirable commodity because it is an ingredient in nearly all U.S. gasoline and is widely used as an intermediate product in the chemical, pharmaceutical and cosmetics industries.

 Carbon-neutral fuels are synthetic hydrocarbons. They can be produced in chemical reactions between carbon dioxide, which can be captured from power plants or the air, and hydrogen, which is created by the electrolysis of water using renewable energy.