

Evaluation Quality of 3D Printed Clay Objects Using a 3D Structured Light Scanning System

Kwangwoo Wi and Kejin Wang Department of Civil, Construction and Environmental Engineering, Iowa State University

Presented at the Research in Progress Session, ACI Fall 2020 Convention, 10. 26. 2020

1. INTRODUCTION

Research background

3D printed clay with complicated shapes

3D printed concrete with different mix proportions

1. INTRODUCTION

3D-SLSS

3D-SLSS: 3D-Structured Light Scanning System

Schematic diagram of operating concept of 3D-SLSS

Objective

(1) To explore the potential of 3D-SLSS's application in 3D printing quality evaluation

(2) To develop a test protocol for 3D scan and image analysis

(3) To identify parameters that govern 3D printing quality

(4) To quantify the printing quality of the samples studied

IOWA STATE

Materials & Printing process

Physical and chemical properties of clay

	Water content (%)	Plasticity (IP Atterberg)	Carbonate content (%)	Drying shrinkage (%)	Porosity at Cone 10			
Clay	25.42	16	0	8.5	0			
Tube of extruder Stand-off distance								

3D printer

IOWA STATE

UNIVERSITY

Materials & Printing process

Printing parameters

	Printing	Extrusion	Stand-off	Layer	Layer
	speed	flow rate	distance	width	thickness
	(mm/s)	(mL/s)	(mm)	(mm)	(mm)
Sample 1	30	0.38			
Sample 2	105	0.38	2	5	2
Sample 3	60	0.30			

2. EXPERIMENT PROGRAM

Image analysis

3D-SLSS set up

Side view

Top view

Example 3D image from top view

IOWA STATE

UNIVERSITY

2. EXPERIMENT PROGRAM

IOWA STATE UNIVERSITY

Image analysis

2. EXPERIMENT PROGRAM

IOWA STATE

3

2

1

0

Designed

Sample 1

Sample 2

Geometry characterization

42 r

41

40

Total height (mm) 86 65

37

36

35

3

2.5

2

Layer thickness (mm) 1 2.1 1

0.5

0

Designed

Sample 1

Sample 2

Sample 3

Sample 3

IOWA STATE UNIVERSITY

Distortion

Distortion angle and area of printed samples

	Surface angle	Semi-cross-section area	Distortion angle	Distortion area
	(degree)	(mm ²)	(degree)	(mm ²)
Designed	90	1200	0	0
Sample 1	91.08	862.7	1.089	337.2
Sample 2	94.28	868.6	4.286	331.3
Sample 3	96.70	805.6	6.706	394.3

Conclusions

- 1) No samples studied had measured values equal to the designed values, although those appeared well-printed. Therefore, it is important to identify key parameters and quantify printing quality.
- 2) Printed clay samples generally exhibited reduced total height, diameter, and layer thickness (corresponding to the increased layer width), and measurable distortion. This is mainly because the **freshly printed clay material deformed under the weight of the layers above**.
- 3D-SLSS provided accurate measurements for geometric parameters and well quantified the degree of distortion of 3D printed products. This method can be extended to quantify the 3D printing quality of cement-based materials.