

COLLEGE OF ENGINEERING School of Civil and Construction Engineering

# Freeze and Thaw Performance of Internally Cured Concrete

Rita M. Ghantous, Jason W. Weiss

Oregon State University

October 25<sup>th</sup> , 2020



**GENERAL INTRODUCTION** 

#### **EXPERIMENTAL PROCEDURES**

RESULTS

### **GENERAL CONCLUSIONS**

# GENERAL INTRODUCTION

# What is Internal Curing (IC)

- IC works from the inside of concrete
- IC water is held in porous bodies or super absorbent polymers (SAP) in fresh concrete.
- After setting, this water can be released, reducing shrinkage and hydrating the cement





Castro et al. 2010

# Freeze Thaw Performance IC

Internally cured mixtures have been proven to perform well

They perform as good as conventional mixtures when exposed to freezing and thawing (FT) cycles



Slide 4 of 23

### Influence of w/c





 High w/c may be susceptible to damage at early ages as the DOS stays higher and the water is not drawn out of the IC Agent

Jones et al. 2013





Investigate the early age freeze-thaw behavior of IC materials

Water to cement ratio (w/c) is varied to alter the suction pressure (DOS)



**GENERAL INTRODUCTION** 

#### **EXPERIMENTAL PROCEDURES**

RESULTS

### **GENERAL CONCLUSIONS**

# **EXPERIMENTAL PROCEDURES**

# **Mixture proportions**



| Sample   | SAP (%cement mass) | SAP (%cement mass)            |
|----------|--------------------|-------------------------------|
| 0.30 w/c | 0                  | 0.27                          |
| 0.40 w/c | 0                  | 0.27                          |
| 0.50 w/c | 0                  | 0.27                          |
| 0.60 w/c | 0                  | 0.27                          |
| 0 1      | 3 7 14             | Sealed<br>curing<br>28 (days) |

# **Experimental program**



After the curing duration, the following parameters were measured:

Freeze thaw performance using:

- Length change measurements
- Ultrasonic pulse velocity measurements

Degree of saturation and degree of hydration using:

Loss on ignition measurements



## **Length measurements**





**ACI Concrete Convention** 

ritamaria.ghantous@oregonstate.edu ©



**ACI Concrete Convention** 

Slide 12 of 23

### **Degree of saturation** NO SAP



### WITH SAP



**GENERAL INTRODUCTION** 

### **EXPERIMENTAL PROCEDURES**

RESULTS

### **GENERAL CONCLUSIONS**

# **EXPERIMENTAL RESULTS**

# **Degree of hydration**





The addition of IC increases the DOH

This increase in the DOH is more prominent in mixtures with low w/c w/c

DOH increased by 14% at 28 days of curing

# **Degree of saturation**





- SAP samples have a slightly higher DOS than plain samples at early ages
- Over time, the DOS of the SAP samples with a w/c<0.42 decrease below that of the plain sample.
- SAP increases the DOS of cement paste with w/c of 0.50 and 0.60 by 1% on average

# **Freeze Thaw damage**





FT damage obtained from residual strain is in accordance with the one obtained based on UPV measurements







SAP addition slightly increases the FT damage at early age (≤3days) for mixtures with a w/c<0.42







SAP does increase the curing period needed for mixtures with a w/c>0.42





The addition of SAP in the matrix with a w/c<0.42 slightly increases the curing duration needed to avoid F-T damage.

The addition of SAP to mixtures with a high w/c (>0.42) is not recommended **GENERAL INTRODUCTION** 

### **EXPERIMENTAL PROCEDURES**

RESULTS

### **GENERAL CONCLUSIONS**

# GENERAL CONCLUSIONS

### Conclusions



- IC works well for materials with a low w/c (<0.42):
  - Increases the degree of hydration
  - Reduces the cracking potential
- IC-mixtures with a low w/c are freeze-thaw resistant when properly designed
- Care should be taken to avoid F-T damage during the first few days of curing → IC lowers freezing and thawing resistance only at the very early age (first 3 days of curing)

# OREGON STATE UNIVERSITY

# Thank you for your attention

**GENERAL INTRODUCTION** 



### **EXPERIMENTAL PROCEDURES**

RESULTS

### **GENERAL CONCLUSIONS**



**ACI Concrete Convention** 

ritamaria.ghantous@oregonstate.edu ©

# **Benefit of internal curing**



### Plain bridge deck: several cracks



Internal curing reduces shrinkage and thus the potential for cracking - Cracks accelerate fluid ingress and corrosion of reinforcing steel

### Internally cured deck: no cracks





Pease et al. 2008