Effect of Fiber Reinforcement on the Tensile Behavior of Rebar Reinforced UHPC

Manish Roy (Asst. Professor in Residence) Kay Wille (Associate Professor)

Advanced Cementitious Materials & Composites Laboratory Civil & Environmental Engineering Department School of Engineering University of Connecticut Storrs, CT, USA

ACI Fall 2019 The Concrete Convention and Exposition American Concrete Institute

UHPC – Innovations and Changes in Structural Design, Part 3 of 3 October 20, 2019, Cincinnati, OH

Goal

To investigate the influence of fiber volume fraction and fiber orientation on the uniaxial tensile behavior of rebar-reinforced UHPC

Mechanics of strain-hardening rebar-reinforced UHPC under tension

– – – – – – – – – – – – – – – – – – –	Ē	Т						
			XXX	XXX	XXX		XXX,	XXX
	XXX			¥X¥	XXX	XXX	XXX	XXX
			χ	XXX	XXX	XXX	XXX	XXX
			XXX	XXX	$\mathbb{A} \mathbb{A} \mathbb{A}$	XXX	\times	XXX
		XXX XXX	XXX	XXX	XXX	XXX	XXX	XXX
	XXX	$\underline{XXX} \underline{XXX}$	\mathbf{X}	XXX	XXX	XXX	XXX	XXX
			\times	XXX	XXX	XXX	XXX	XXX
	Ļ							

(from left to right)

Uncracked

aci

- Fiber bridging
- Multiple matrix cracking due to strain hardening
- Macro cracking due to matrix softening
- Multiple macro cracking due to rebar hardening
- Rebar failure/softening

Modeling approach – UHPC

Discrete fiber model

- Captures anisotropic behavior of UHPC
- Time consuming
- Lot of computational power

□ Alternative modeling approach proposed

- Fibers modeled as smeared reinforcement
- Captures anisotropic behavior of UHPC
- Computationally efficient

Smeared fiber reinforcement

- FE program ATENA (v. 5.6.1i)
 - 'Reinforced Concrete' material model
 - Concrete matrix volume element
 - Fibers (smeared) 1D element
 - Perfect bond between smeared reinforcement and concrete
- $D = D_c + \sum_{i=1}^n D_{si}$
- σ-ε curve of fibers calibrated to correctly simulate the actual effect of discrete fibers

Fiber calibration – uniaxial tensile test

aci

Uniaxial test simulation

Note: All dimensions are in mm unless otherwise specified.

aci 🕽

Tensile test (effect of fiber orientation)

aci

aci

^a $\Delta F_r = (f_t - f_y)A_r$. ^b $\Delta F_m = (f'_t - \sigma_w)A_m$; σ_w is the stress in UHPC at a specific crack width (*w*). ^c seawater; wetting and drying, ^d Dry air or protective membrane (Exposure data from ACI 224R-01).

Recommendation for ductility

■ RC design – min. 0.5% strain for rebar (tension controlled)

Reinforced UHPC – 1% strain

---- parallel fibers ----- random fibers 1% strain line 1.2 1 Strain at peak stress (%) ductility 0.8 0.6 0.4 0.2 0 2 0.5 0.75 1 0 Fiber volume fraction (%)

0.5% fibers recommended for ductility

Conclusions

- A computationally efficient method of modeling UHPC proposed
- Fiber modeled as smeared reinforcement
- Bond between UHPC and rebar investigated
- Effect of fiber volume fraction and fiber orientation on uniaxial tensile behavior of reinforced UHPC investigated
- Recommendation on fiber volume fraction made based on ductility criteria

Acknowledgments

Department of Homeland Security (DHS), USA

Department of Civil and Environmental Engineering, UConn

Fellowships: NorthEast Transportation Technician Certification Program (NETTCP); Graduate School at UConn

Cervenka Consulting