RECENT SUPERTALL CONCRETE TOWERS IN THE MIDDLE EAST

John Peronto and Robert Sinn

11th International Workshop on Structural Concrete

October 19, 2019

Uptown Dubai – Site of Supertalls

Uptown Dubai – Site of Supertalls

- 711m Supertall Tower and Structural System
- Concrete Material
 - a. Strength (f'c)
 - b. Modulus (MOE)
 - c. Local Challenges
- Wind Tunnel Testing
- Site Challenges and Wake Buffeting
- Performance

Structural System

- Concrete Core
- Concrete Mega-Columns
- Steel Outriggers (3 – Stories Deep)
- Concrete Belt Wall
 (2 Stories Deep)
- Concrete Secondary
 Columns
- Concrete Floor Framing

High-Strength Concrete Data

Mix		NORMAL	NORMAL	high pumping	high pumping	high pumping/NORMAL	high pumping/NORMAL	high pumping	high pumping
Grade (Cylinder)		C80/20	C80/20	C80/20	C80/20	C80/10	C80/10	C80/10	C80/10
Description		520-OPC+45%GGBS+8%MS GABRO	520-OPC+45%GGBS+8%MS LIMESTONE	520-OPC+45%GGBS+8%MS LIMESTONE	520-OPC+45%GGBS+8%MS GABRO	520-OPC+45%GGBS+8%MS GABRO	520-OPC+45%GGBS+8%MS LIMESTONE	520-OPC+25%PFA+8%MS LIMESTONE	520-OPC+25%PFA+8%MS GABRO
5	20 mm	520	520	370	370	0	0	0	0
aggrgate Combinati	10 mm	350	350	420	420	780	780	780	780
	5mm	560	560	580	580	550	550	550	550
	dune sand	320	320	390	390	430	430	430	430
	E ds a)	43700	43200	43900	44000	43400	43800	43600	44000
	N Di	45200	43200	44600	44700	44600	45100	45500	44400
@ 7Days	L Re	41200	43000	40700	40200	41300	40900	41300	41200
	Average	43367	43133	43067	42967	43100	43267	43467	43200
	Average Compressive strength (Mpa)	67.5	64.0	64.5	66.0	58.2	65.0	56.0	57.0
@ 28Days	a) E	53200	54300	53300	49900	54300	53100	50300	54500
	M B RO	52400	52500	52900	52000	52400	52800	53100	52000
	- <u>*</u> _	54000	53100	54100	53700	54500	53500	54400	50200
	Average	53200	53300	53433	51867	53733	53133	52600	52233
	Average Compressive strength (Mpa)	80.0	82.0	80.5	72.5	74.5	76.0	70.0	72.5
@ 56Days	MOE Records (Mpa)	58400	60700	55500	58800	58900	59300	57400	54600
		56600	61000	56200	59500	60400	58600	56300	56200
		56700	60800	58400	62900	58700	60100	58500	59000
	Average	57233	60833	56700	60400	59333	59333	57400	56600
	Average Compressive strength (Mpa)	80.0	84.0	82.5	83.0	88.5	85.0	83.0	81.0

Floor Framing – Concrete vs Steel

Spandrel Beam RC Option Section

Spandrel Beam Steel Option Section

Floor Framing – Flat Slab Analysis

Total long term deflection at corner bay = 21.0mm-

LEVEL 70 DEFLECTION DIAGRAM Scale: not to scale Thornton Tomasetti

Mega-Column Design

Structural System

Concrete Core with Mega-Column and Outrigger Schemes

Outriggers and Seismic Overstrength

Outrigger MEP Coordination

Footprint Comparison

Uptown Dubai T1 - Floor Plan

Jeddah Tower – Floor Plan

Footprint Comparison

<u>Uptown Dubai T1 and Jeddah Tower – Floor Plan Overlay</u>

Wind Tunnel Testing - RWDI

Initial HFFB Wind Tunnel Test Response

Typical Time Between Occurrences

Return	Peak Accelerations ⁽²⁾ (milli-g)				Peak Torsional Velocities			
Period	Total - [X, Y and torsional components]			(milli-rads/sec)				
(Years)	1.5% Damping 2.0% Damping		5.0% Damping	1.5%	2.0%	5.0%	CTBUH ⁽⁵⁾	
				Damping	Damping	Damping	Criteria	
1	22 - [20, 20, 0.6]	19 - [17, 17, 0.5]	12 - [11, 11, 0.3]	0.3	0.2	0.1	1.5	
5	47 - [45, 26, 0.9]	40 - [39, 22, 0.8]	26 - [25, 14, 0.5]	0.4	0.3	0.2	-	
10	48 - [47, 26, 1.0]	42 - [41, 22, 0.9]	26 - [26, 14, 0.6]	0.4	0.4	0.2	3	

Aeroelastic Wind Tunnel Test Refined Response

Return Period	Peak Accelerati Total - [X, Y and tors	Peak Torsional Velocities (milli-rads/sec)			
(Years)	1.5% Damping	2.0% Damping	1.5% Damping	2.0% Damping	CTBUH ⁽⁵⁾ Criteria
1	19 - <mark>[</mark> 19, 13, 0.54]	17 - [16, 11, <mark>0.4</mark> 7]	0.3	0.3	1.5
5	26 - [25, 16, 0.80]	22 - [21, 14, 0.69]	0.4	0.4	-
10	27 - [26, 19, 0.95]	23 - [22, 16, 0.82]	0.5	0.4	3

Tower 2 (340m) – WAKE BUFFETING !!

Tower T2

- 1) Site Orientation
- 2) Inter-Tower Spacing
- 3) T1 Relative Height
- 4) T1 Wake in Resonance with T2
- 5) T2 Structural Properties
- 6) T2 Geometry

Site Orientation

Tower 2 (340m) – WAKE BUFFETING !!

Results

Thornton Tomasetti

Phase 1 - Construction Progress (Raft)

Phase 1 - Construction Progress (Tower Rising)

Jeddah Tower – 1st 1km Tall Structure

Team/Code Recap

- Structural Engineer:
- Architect:
- Developer

- Thornton Tomasetti (TT) Adrian Smith + Gordon Gill Architecture (AS+GG) Jeddah Economic Company (JEC)
- Competition Start : June 2009
- Complete Design Docs: August 2013
- Reinforced Concrete: Design to ACI 318
- General Contractor: Saudi BinLaden Group (SBG)
- Employers Engineer: Dar Al-Handasah

Structural System

- Flat plate floors
- No spandrel beams

High Strength Concrete and Reinforcing Bar Materials

85 MPa Concrete Spec

- f'c =85 MPa (12,3000 psi) at 90d
- MOE =43.3 GPa (6300 ksi) at 90d
- Mix: Near SCC

OPC	696	lb
SF	76	lb
PFA	170	lb
3/8" CA	1580	lb (Medina)
Fine Agg	1245	lb
Water/Ice	235	lb
HRWR		Polycarboxylate
VMA		

Water/Cementitious Ratio 0.25

Density 156 pcf

High Strength Concrete – Site Testing for f'c

High Strength Concrete – Site Testing for MOE

Bayesian Statistical Analysis

Construction Guidelines & Monitoring

Kingdom Tower

*PreConstruction Testing Program

*Full Construction Concrete Testing Program

- Modulus
- Strength
- Creep

*Surveying/Monitoring Requirements

*Reporting

*Compensation Instructions

- Vertical
- Horizontal

*Assumed Sequence of Construction

Kingdom Tower-Staging Assumptions

Results – Kingdom Tower

Wall Stress vs. Time

Thornton Tomasetti

Results – Kingdom Tower

Horizontal Displacement

Construction – January 2014

Construction – February 2014

Mat Concrete

- fc= 60 MPa (8,7000 psi) at 56d
- MOE = No requirement
- Mix: Self-Consolidating Concrete

Portland C	454	lb
SF	66	lb
PFA	305	lb
1/2,3/8" CA	1440	lb (Mecca)
Fine Agg	1390	lb
Water/Ice	250	lb
HRWR	Polycarb	oxylate
VMA		

Mat Foundation – Steel Fixing

Tower Mat Formwork

Tower Mat Concrete Pour

Mat Foundation – Insulation / Curing

Construction Progress

Sequence of Construction

Wing/Corridor Wall Formwork

October 2019 Progress:

- Height 265m
- Exterior Wall
 Installation
 Commenced
- First Column
 Setback
 Reached
- ~40% Concrete
 placed

