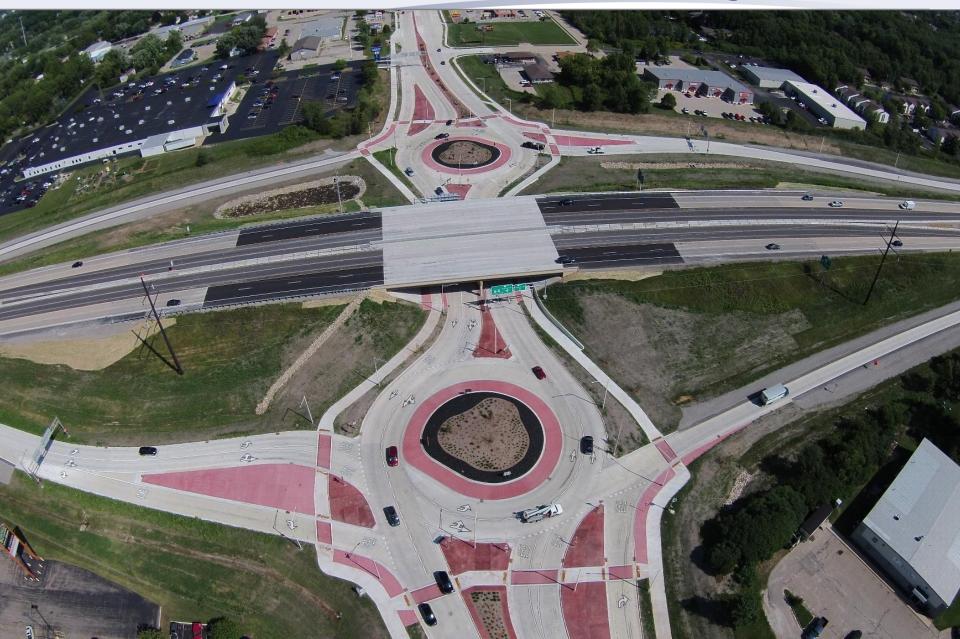

Cement-Based Pavement Design Methods and Tools for the Practitioner


ACPA

2019 ACI Fall Convention Cincinnati, Ohio October 22, 2019

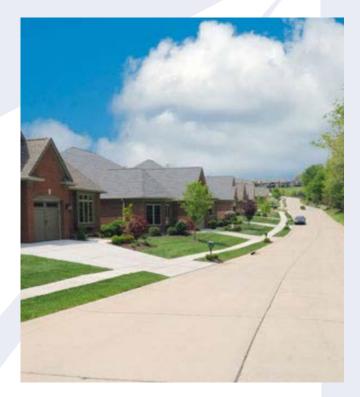
Eric Ferrebee, P.E. Director of Technical Services American Concrete Pavement Association

Design... for What?

Design... for What?

- Streets & Local Roads
- Parking Lots
- Industrial & Trucking Facilities
- Roller-Compacted Concrete Pavement
- Pervious Concrete Pavement
- All of the above

Streets and Local Roads

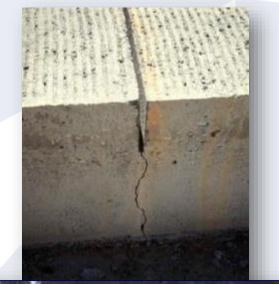

ACI 325 – Concrete Pavements

- 325.12R-02: Guide for Design of Jointed Concrete Pavements for Streets and Local Roads
- Other documents on construction, mixtures, overlays, etc.
- Other ways to design:
 - PavementDesigner
 - AASHTO 93
 - Pavement ME
 - OptiPave

Streets and Local Roads

• ACI 325.12R-02

- Pavement Material Reqs.
- Thickness Design
 - Traffic
 - Classification
 - Thickness Determination
 - Economic Factors


		<i>k</i> = 100 psi/in (CBR = 3)						
Traffic Classificati	o n	Modulus of Rupture (psi)						
	on	500		600		700		
		Thickness, in.	Max JS, ft	Thickness, in.	Max JS, ft	Thickness, in.	Max JS, ft	
Light Residential	ADTT = 3	5.75	12	5.25 12		4.75	12	
Residential	ADTT = 10	6.50	14	5.75	13	5.25	13	
	ADTT = 20	6.75	14	6.00	13	5.50	13	
	ADTT = 50	7.00	14	6.25	14	5.75	13	
Collector	ADTT = 50	7.75	15	7.00	15	6.50	15	
	ADTT = 100	8.00	15	7.25	15	6.75	15	
	ADTT = 500	8.50	15	7.75		7.00	15	
Minor Arterial	ADTT = 100	9.50	15	8.50	15	7.75	15	
MINOT AIterial	ADTT = 500	10.00	15	9.00	15 15	8.25	15	
	ADTT = 400	11.00	15	10.00	15	9.00	15	
Major Arterial	ADTT = 800	11.25	15	10.25	15	9.25	15	
	ADTT = 1500	11.50	15	10.50	15	9.50	15	
Business	ADTT = 300	8.75	15	8.00	15	7.25	15	
	ADTT = 700	9.00	15	8.25	15	7.50	15	

	k = 200 psi/in (CBR = 10)								
Traffic Classification		Modulus of Rupture (psi)							
		500		600		700			
		Thickness, in.	Max JS, ft			Thickness, in.	Max JS, ft		
Light Residential	ADTT = 3	5.25	10	4.75	10	4.25	9		
Residential	ADTT = 10	6.00	11	5.25	11	5.00	10		
	ADTT = 20	6.25	11	5.50	11	5.00	10		
	ADTT = 50	6.50	11	5.75	11	5.25	11		
	ADTT = 50	7.25	12	6.50	12	6.00	12		
Collector	ADTT = 100	7.50	13	6.75	12	6.00	12		
	ADTT = 500	7.75	13	7.00	13	6.50	12		
Minor Arterial	ADTT = 100	8.50	14	7.75	14	7.00	13		
MINOT Arteria	ADTT = 500	9.25	15	8.25		7.50	14		
Major Arterial	ADTT = 400	10.00	15	9.00	15	8.25	15		
	ADTT = 800	10.25	15	9.25	15	8.50	15		
	ADTT = 1500	10.50	15	9.50	15	8.75	15		
Ducing	ADTT = 300	8.00	13	7.25	13	6.50	13		
Business	ADTT = 700	8.25	14	7.50	15 15	6.75	13		

Streets and Local Roads

ACI 325.12R-02 (continued)

- Jointing
 - Slab size and load transfer
 - Transverse Joints
 - Longitudinal Joints
 - Isolation and Expansion
 - Reinforcement
 - Irregular Panels
 - Sealants
- Soils Info

Parking Lots

 ACI 330 – Concrete Parking Lots and Site Paving
 330R-08 Guide for the Design and Construction of Concrete Parking Lots

Other ways to design:PavementDesigner

Parking Lots

 ACI 330R-08 • Pavement Design Stresses Loads Subgrade PCC Properties • THICKNESS Jointing Steel Reinforcement Joint Filling & Sealing • Grades

Parking Lots

ACI 330R-08 (Continued)

- Materials
- Construction
- Inspection & Testing
- Maintenance & Repair
- Cleaning

Industrial and Trucking Facilities

ACI 330 – Concrete Parking Lots and Site Paving

- 330.2R-17: Guide for the Design and Construction of Concrete Site Paving for Industrial and Trucking Facilities
- Other ways to design:
 - PavementDesigner
 - OptiPave
 - AirPave

Industrial and Trucking Facilities

• ACI 330.2R-17

- Subgrades and Subbases
- Pavement Design
 - Jointing
 - Reinforcement
 - Stability/Load Transfer
- Materials and Mixtures
- Construction
- Inspection & Testing
- Maintenance & Repair & Sustainability

Roller-Compacted Concrete Pavement

ACI 327 – Roller-Compacted Concrete Pavements

- 327R-14 Guide to Roller Compacted Concrete Pavements
- Other ways to design:
 - PavementDesigner

Roller-Compacted Concrete Pavement

• ACI 327R-14

- Common Uses
- Properties & Materials
- Mixture Proportioning
- Structural Design

Pervious Concrete Pavement

ACI 522 – Pervious Concrete

- ACI 522R-10 Report on Pervious Concrete
- ACI 522.1-13 Specification for Pervious Concrete Pavement
- Other ways to design:
 - PerviousPave
 - PavementDesigner

Pervious Concrete Pavement

- ACI 522R-10
 - Applications
 - Materials
 - Properties
 - Mixture Proportioning
 - Pavement Design
 - Structural
 - Stormwater Management

Pervious Concrete Pavement

ACI 522R-10 (continued)

- Construction
 - Prep
 - Placing Consolidation
 - Jointing
 - Curing
- QC/Inspection
- Performance
- Limitations
- Environmental

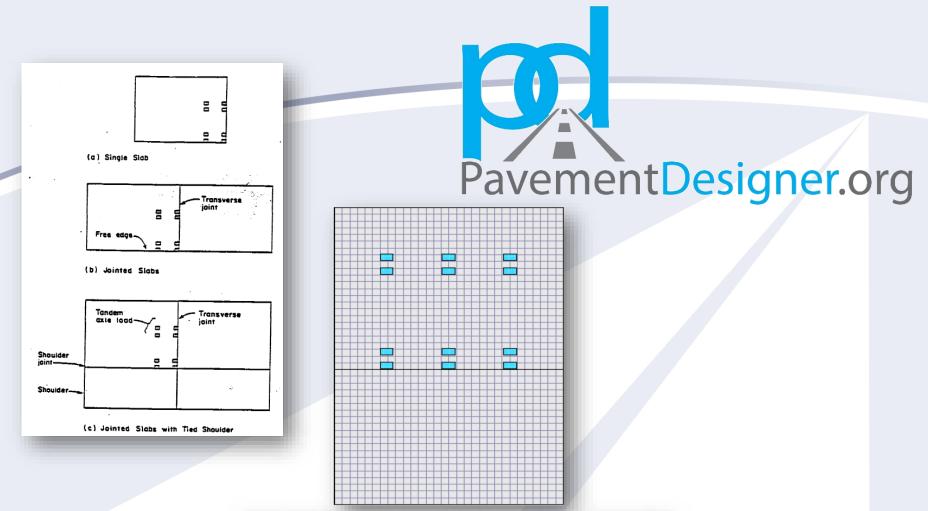


Figure 7. FE model of tridem axle edge loading (lane with tried concrete shoulders).

PavementDesigner.org

PavementDesigner Background

- A free tool designed to simplify concrete pavement design for:
 - Parking lots
 - Roadways
 - JPCP, RCC, CRCP

- Overlays (bonded and unbonded)
- Composite pavements
- Industrial / Intermodal yards
 - Forklifts and other odd loadings

Evolution of Industry Designs

- 1960's PCA Method
- 1980's Erosion Model Introduced
- 2005 StreetPave software released
- 2012 Major Revamp of StreetPave software

ACPA

StreetP

• 2018 PavementDesigner Released

Incorporated other design methodologies

Industry Design Methods

- PCA Methodology originally began in 1960's
- Mechanistic based
- Tailored for streets and roads
- Failure modes are cracking and faulting

Traffic Spectrum + Counts

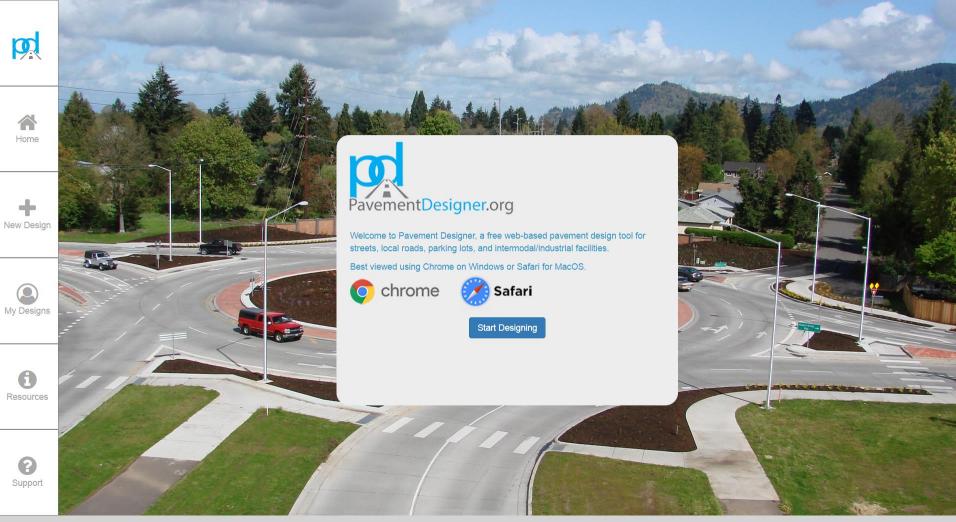
Single Axles			Tandem Axles			
Axle Load (kip)	Axles/1,000 Trucks		Axle Load (kip)	Axles/1,000 Trucks		
34	0.19		60	0.57		
32	0.54		56	1.07		
30	0.63		52	1.79		
28	1.78		48	3.03		
26	3.52		44	3.52		
24	4.16		40	20.31		
22	9.69		36	78.19		
20	41.82		32	109.54		
18	68.27		28	95.79		
16	57.07		24	71.16		

• Total trucks in design lane over the design life... calculated from trucks/day (2-way), traffic growth rate (%/yr), design life (yrs), directional distribution (%) and design lane distribution (%)

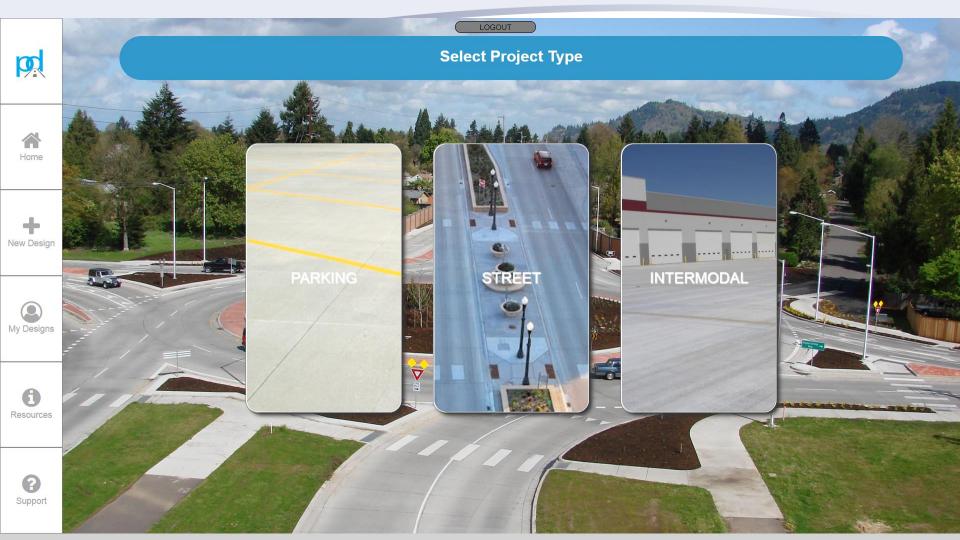
Traffic Loads Generate Stresses

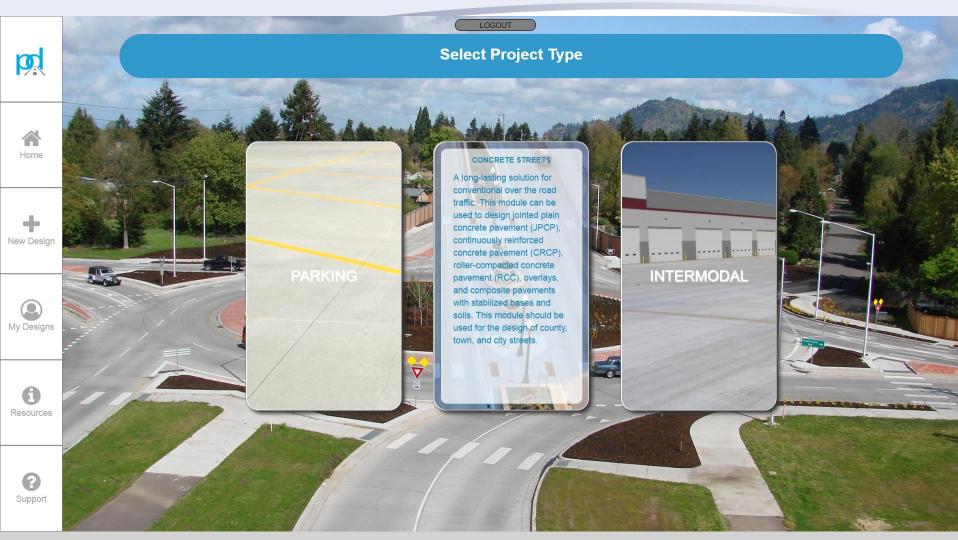
Equivalent stress at the slab edge:

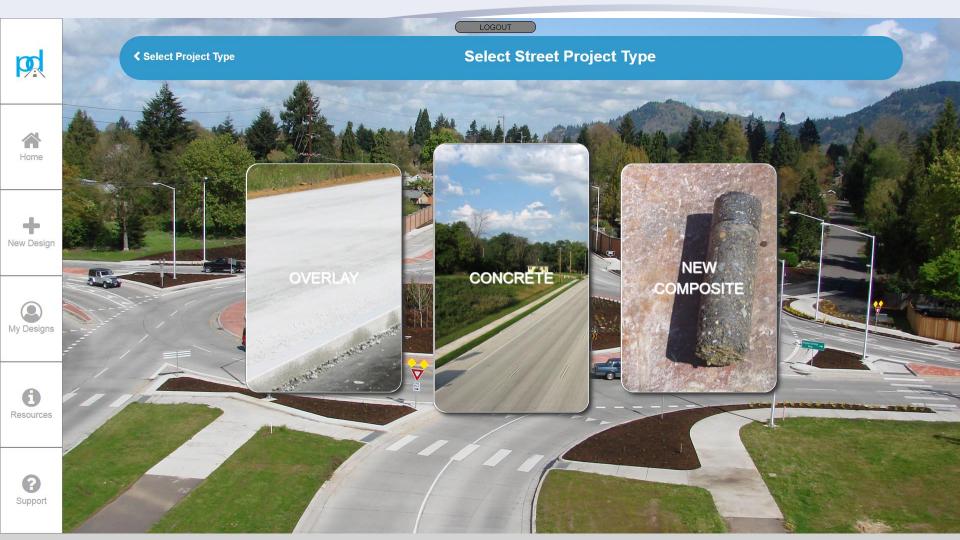
$$\sigma_{eq} = \frac{6 * M_e}{{h_c}^2} * f_1 * f_2 * f_3 * f_4$$

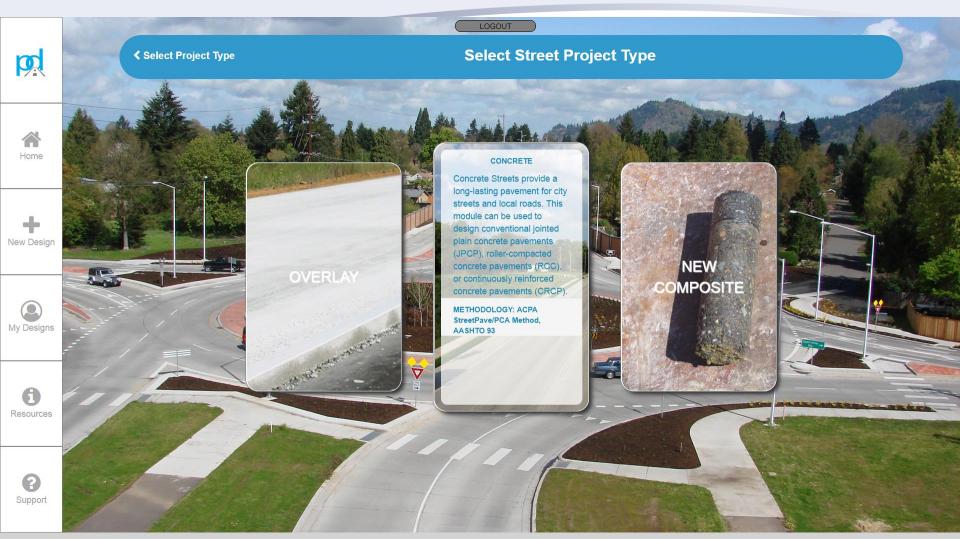

- M_e = equivalent moment, psi; different for single, tandem, and tridem axles, with and without edge support func on radius of relative stiffness, which depends on concrete modulus, Poisson's ratio, and thickness and the k-value
- h_c = pavement thickness, in.
- f_1 = adjustment for the effect of axle loads and contact area
- f_2 = adjustment for a slab with no concrete shoulder
- f_3 = adjustment to account for the effect of truck (wheel) placement at the slab edge
- f_4 = adjustment to account for approximately 23.5% increase in concrete strength with age after the 28th day and reduction of one coefficient of variation (COV) to account for materials variability

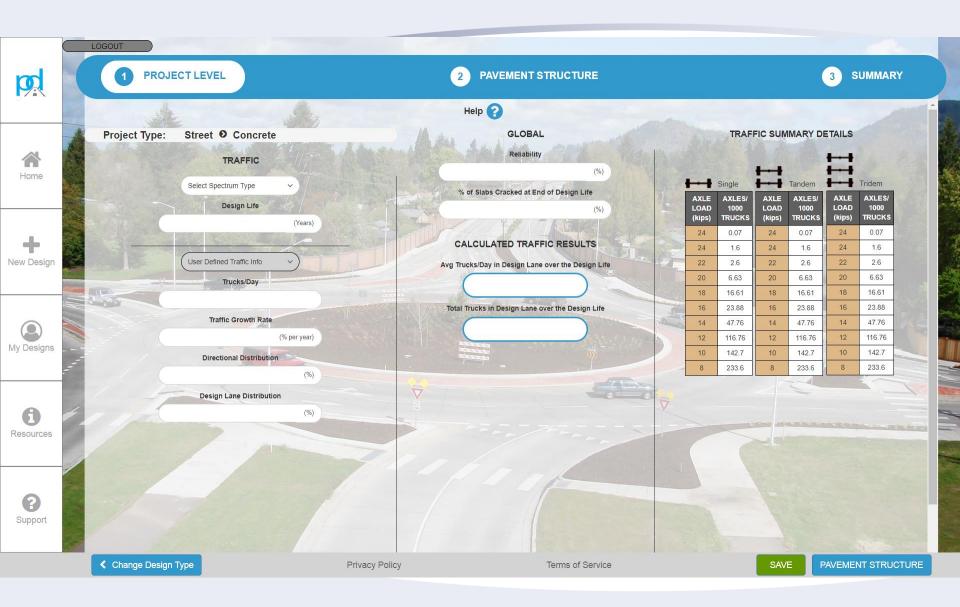
Erosion Model Introduced

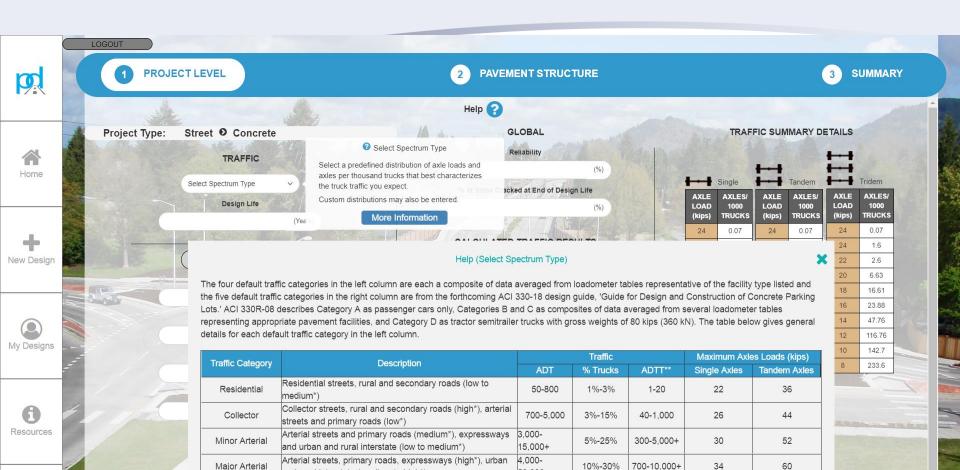

- If dowels used, faulting mitigated & fails by cracks
- No faulting data collected at the AASHO road test so model developed in 1980s using field performance data from WI, MN, ND, GA, and CA
- Similar to cracking models, the pavement is made thicker, as necessary, until faulting model predicts that the pavement will not fail by faulting during
 - the design life
- PD's weak point




PavementDesigner.org



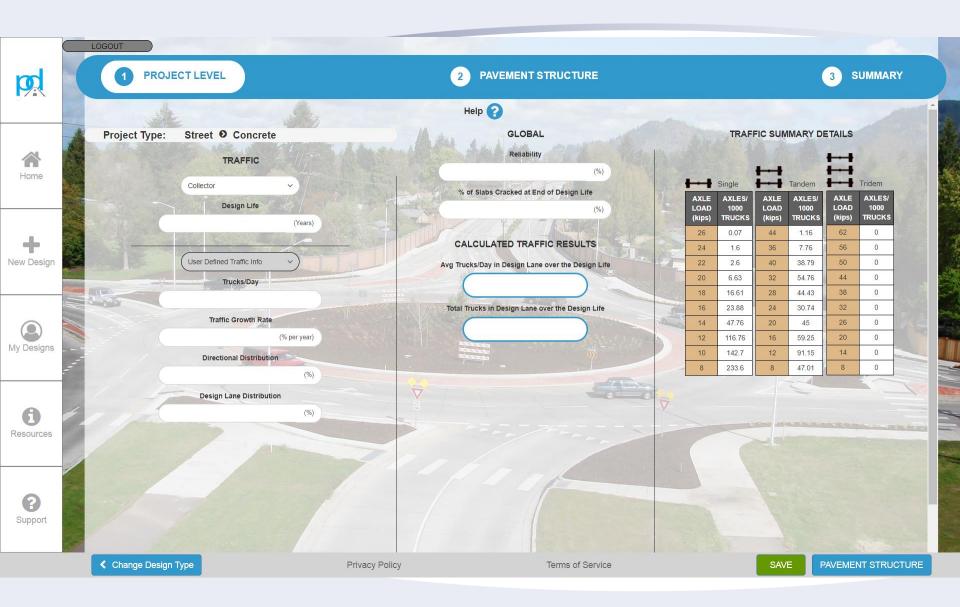

Privacy Policy

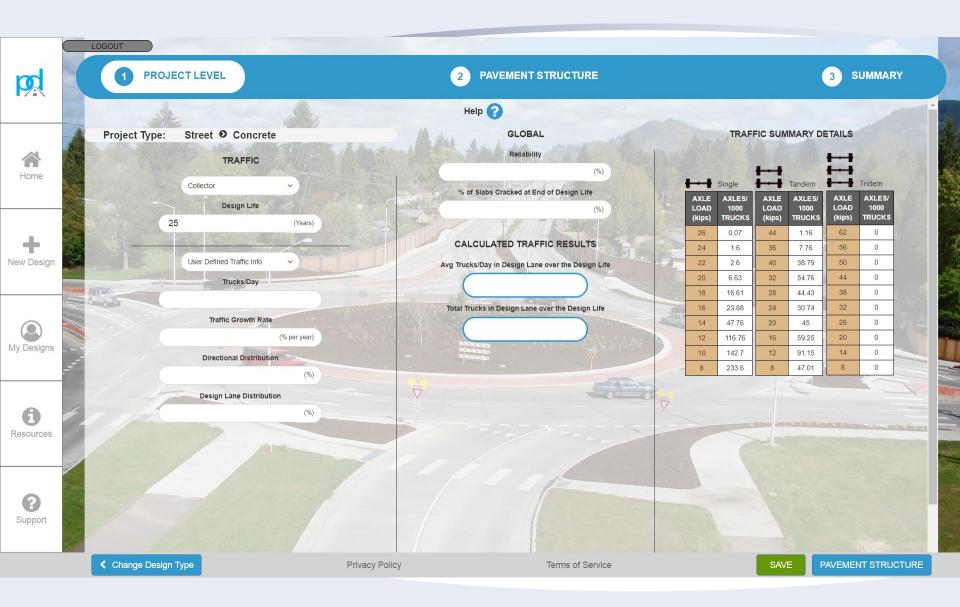


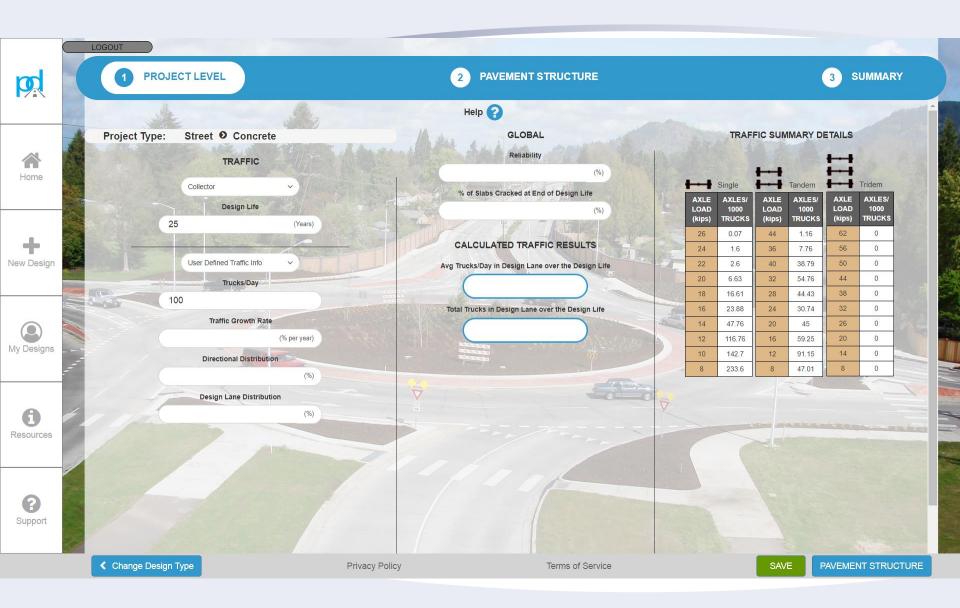
*The descriptors high, medium, or low refer to the relative weights of axle loads for the type of street or road; that is, "low" for a rural Interstate would represent heavier loads than "low" for a secondary road.

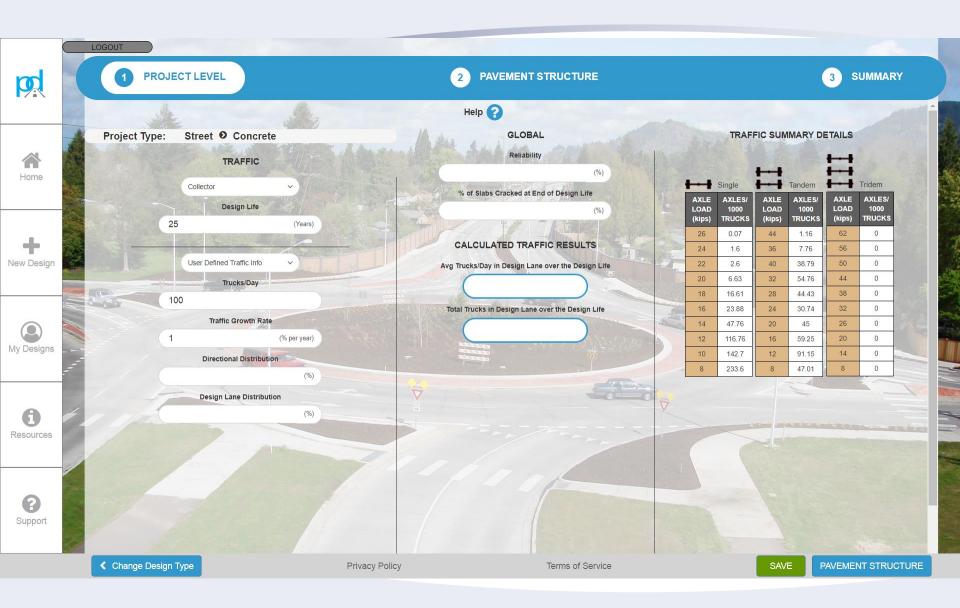
50.000+

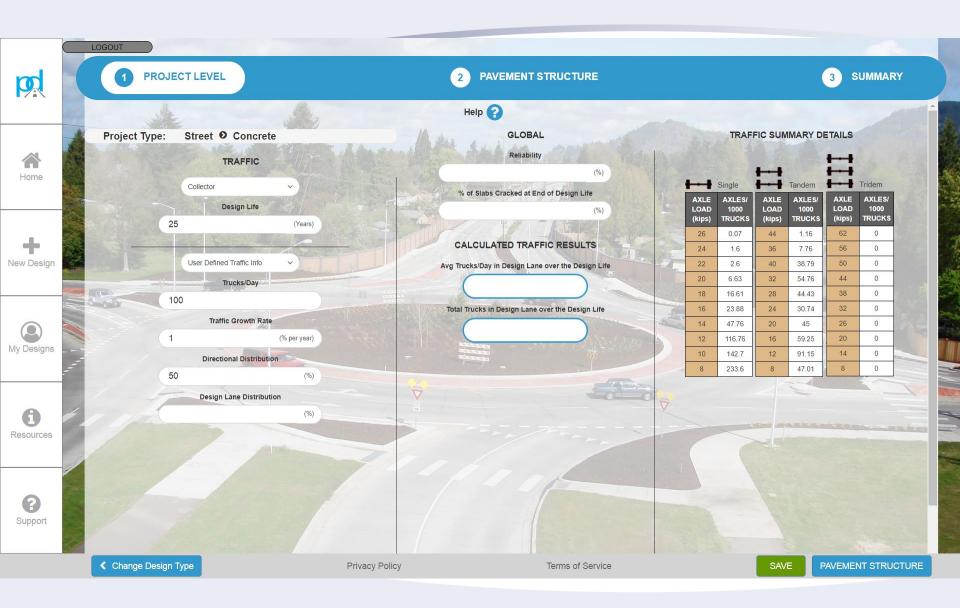
** Trucks -- two-axle, four-tire trucks excluded.

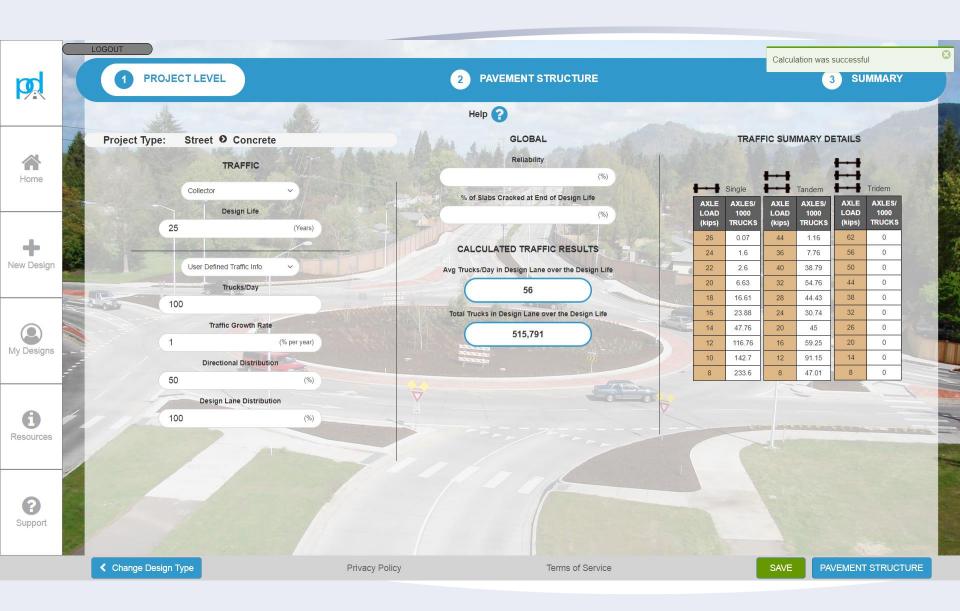

and rural interstate (medium to high*)

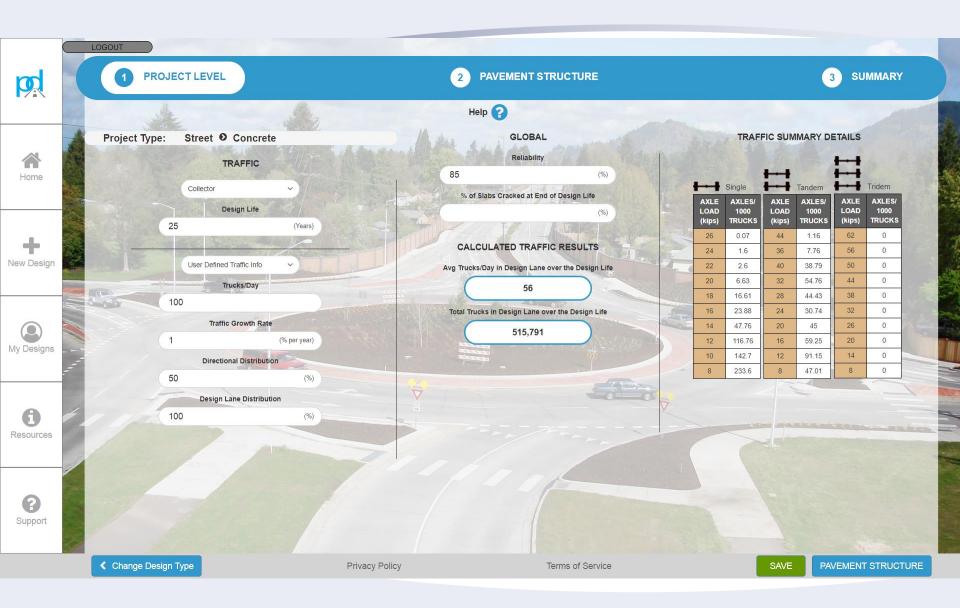

Change Design Typ

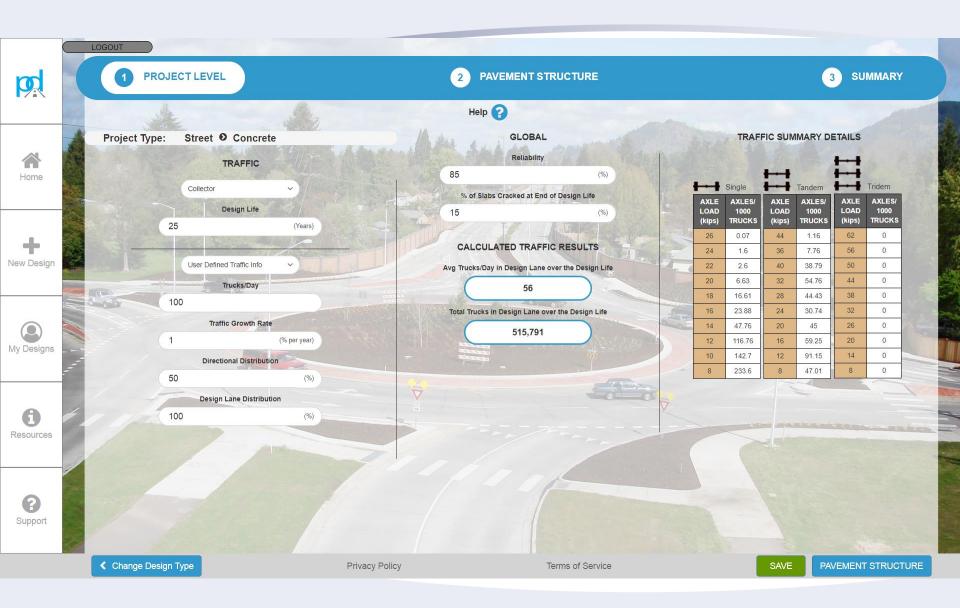

2

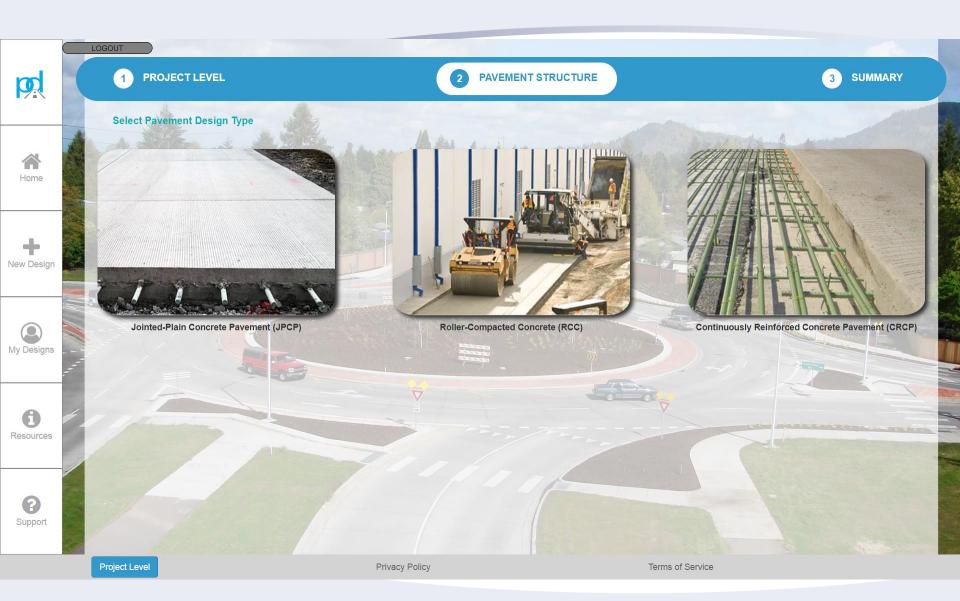

Support

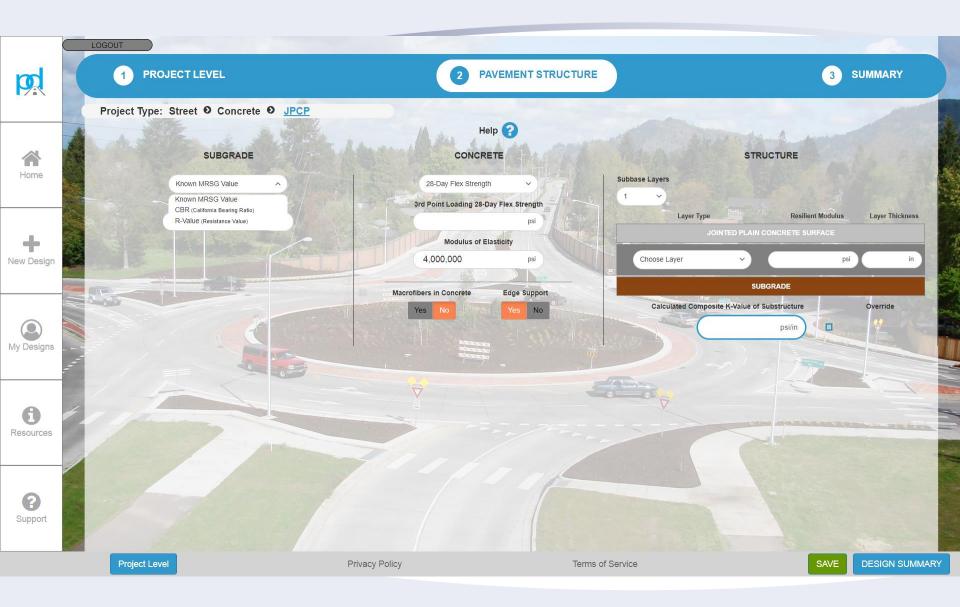

EMENT STRUCTURE

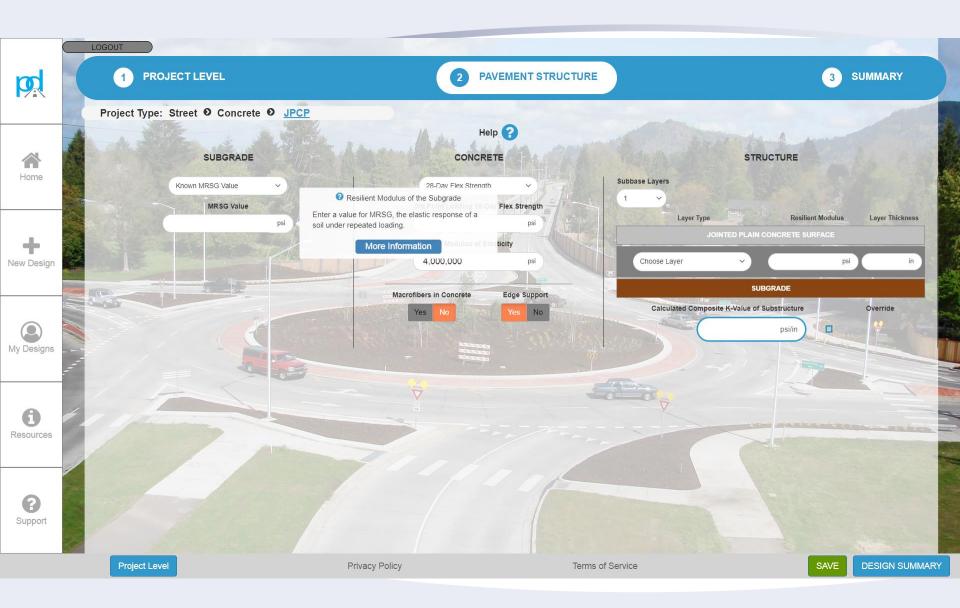


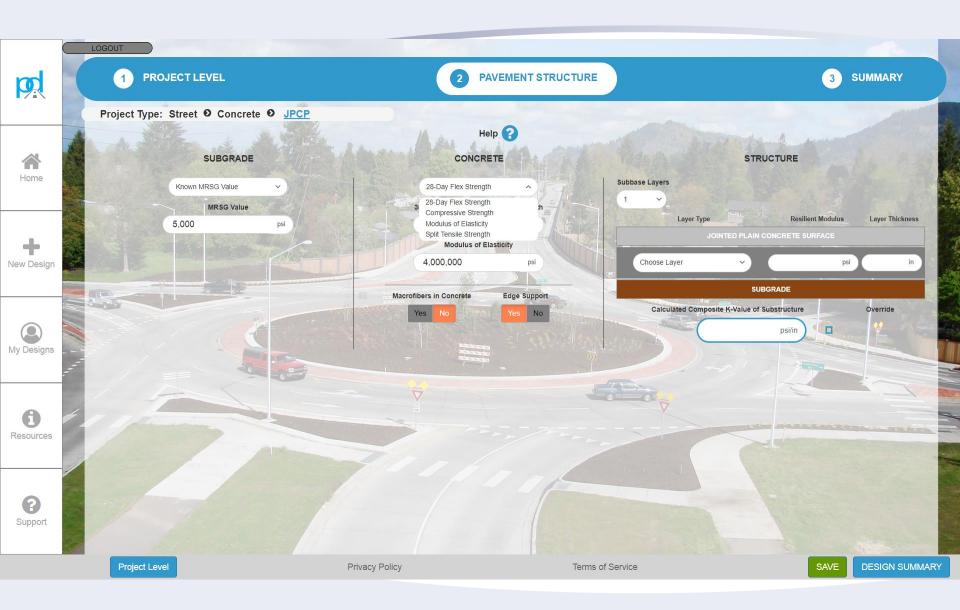


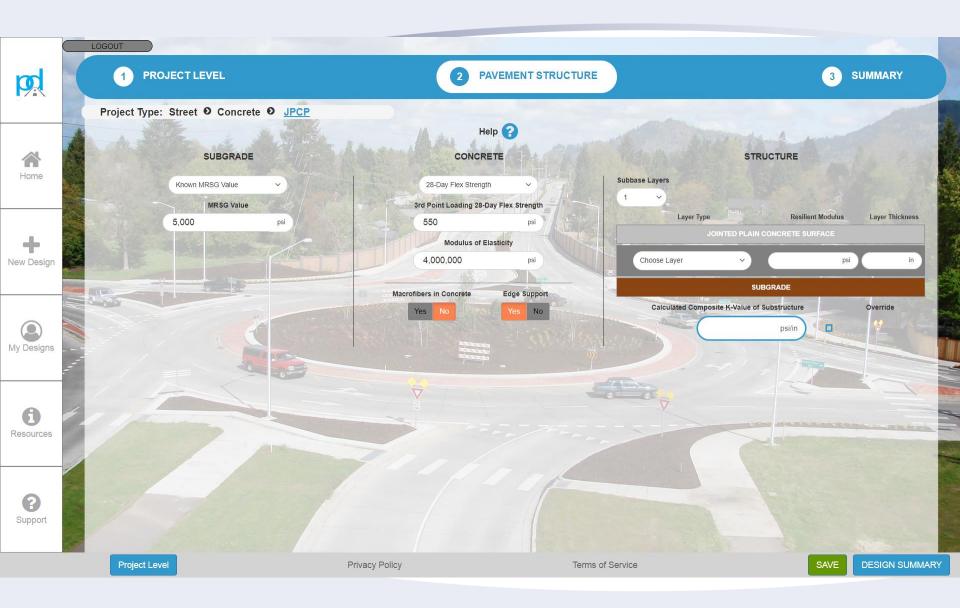


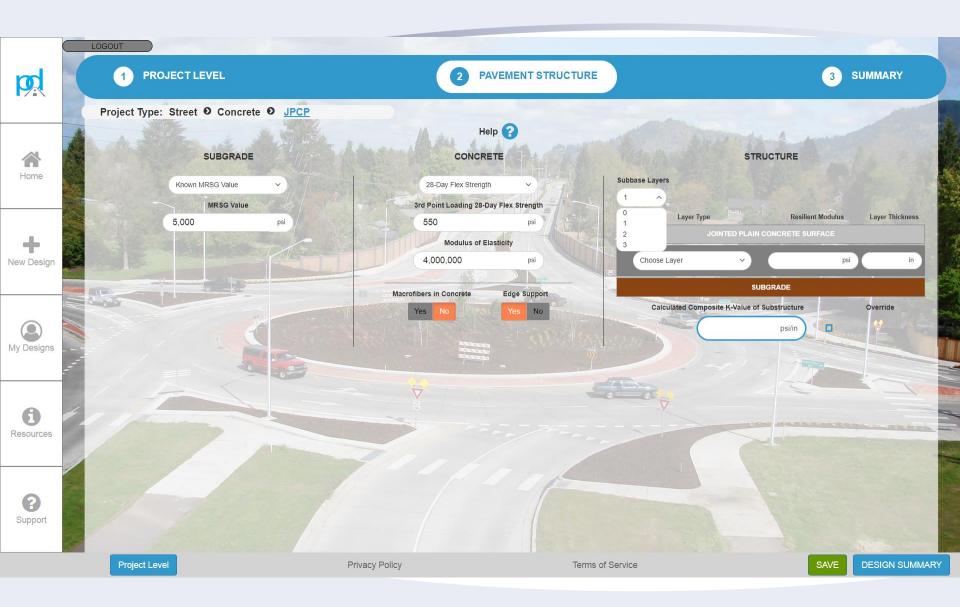


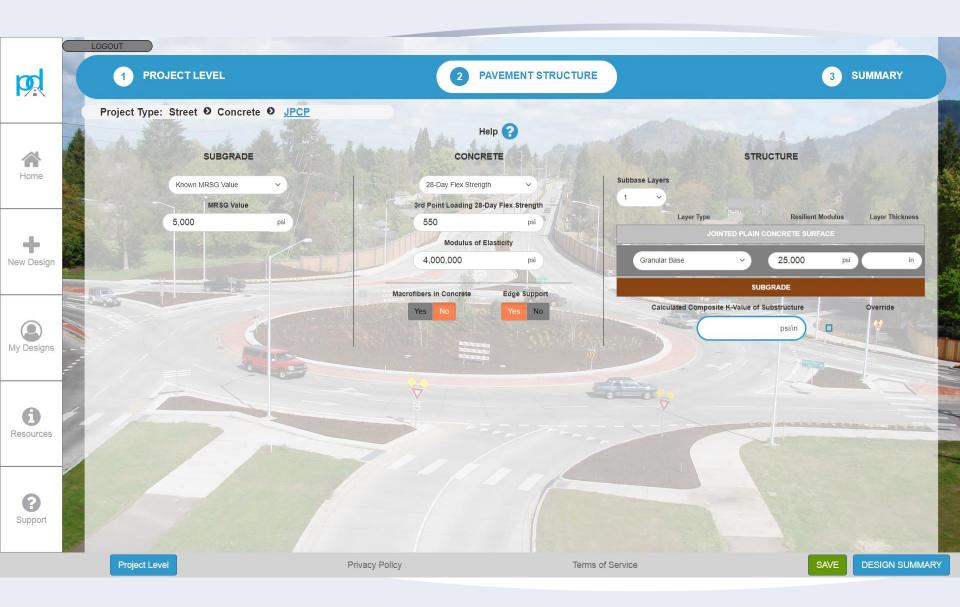


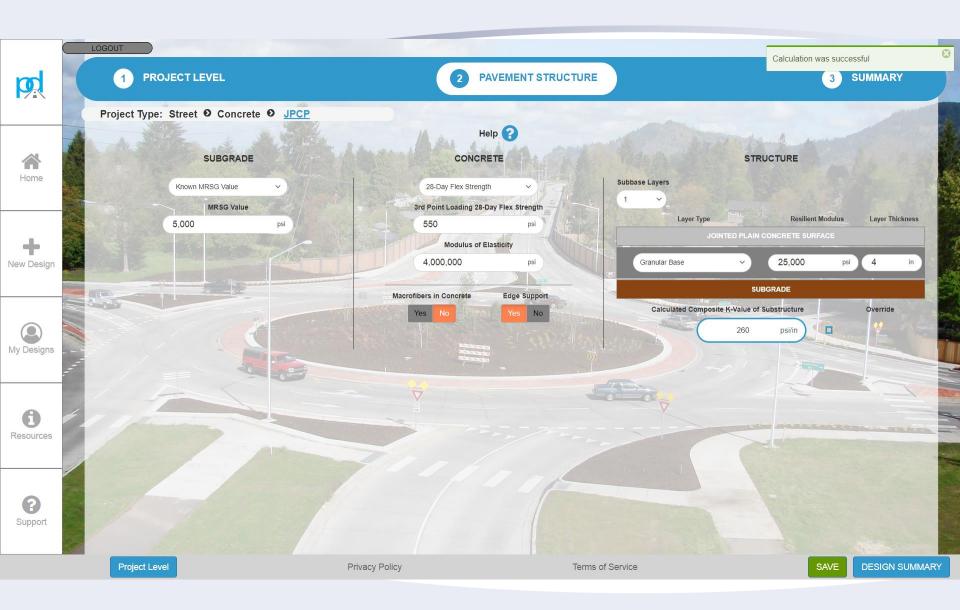









1 PRO	JECT LEVEL	2 PAVE	MENT STRUCTURE			3 SUMMARY
Project Type:	Street O Concrete O JPCP					
A AN	SUBGRADE				STRUCTURE	
	Known MRSG Value	28-Day Flex Strength	· ·	Subbase Layers		
	MRSG Value	3rd Point Loading 28-Day Fle	av Strangth	1 ~		
		ord Point Examing 20 Day 1 is	SX Strength	Laye	r Type Resili	ent Modulus Layer Thick
	psi		psi		JOINTED PLAIN CONCRETE S	URFACE
		Help (Resilient Modu		-		× •
		· · - · · · · · · · · · · · · · · · · ·	nus or the carg, and,			psi psi
	Modulus is a measure of the elastic resp loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v	various common subgrade so	and size after being bils.	stressed) under repeated	Override
		conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO	o return to its original shape a various common subgrade sc ASTM (Unified)	and size after being		Override
	loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils	and size after being bils.	stressed) under repeated	Override
	loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO	o return to its original shape a various common subgrade sc ASTM (Unified)	and size after being bils. CBR (%)	stressed) under repeated Resilient Modulus (psi)	Override
	loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils	and size after being bils. CBR (%) 60-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000	Override
	loading. The table below shows typical C Description Gravel	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-a, poorly graded	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP	and size after being bils. CBR (%) 60-80 35-60	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000	Override
	loading. The table below shows typical C Description Gravel Coarse Sand	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP SW SP	and size after being bils. CBR (%) 60-80 35-60 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000	Override
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP SW SP	and size after being bils. CBR (%) 60-80 35-60 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000	Override
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Materials	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000	Cverride
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand	Conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000	Cverride
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel	Conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000	Cverride
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltty Gravely Sand Clayey Gravel	AASHTO Coarse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-4, gravelly A-2-4, sandy A-2-5, sandy A-2-6, gravelly	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sandy Gravel	AASHTO Coarse-Gra AASHTO Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-5, sandy	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM SM GC	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 25,000-18,000 25,000-39,000 15,000-25,000 15,000-25,000 15,000-25,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sand Clayey Sand	AASHTO CASHTO Carse-Gra A-1-a, well graded A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-6, gravelly A-2-6, gravelly A-2-6, sandy	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM SM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sandy Gravel	AASHTO Coarse of a soil (how well a soil is able to CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-6, gravelly A-2-6, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, sandy	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 25,000-18,000 25,000-39,000 15,000-25,000 15,000-25,000 15,000-25,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sand Clayey Sand Clayey Sand	AASHTO CBR and Resilient Modulus values for v CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-5, sandy A-2-6, gravelly A-2-6, sandy A-2-7, gravelly A-2-7, sandy Fine-Grai	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC ined Soils	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40 10-20	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000 9,000-15,000	Cverride
	loading. The table below shows typical C	AASHTO Coarse of a soil (how well a soil is able to CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-6, gravelly A-2-6, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, sandy	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40 10-20 4-8	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000 9,000-15,000 5,000-8,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sand Clayey Sand Clayey Sand	AASHTO CBR and Resilient Modulus values for v CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-5, sandy A-2-6, gravelly A-2-6, sandy A-2-7, gravelly A-2-7, sandy Fine-Grai	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC ined Soils	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40 10-20	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000 9,000-15,000	Cverride


1 PRO	JECT LEVEL	2 PAVE	MENT STRUCTURE			3 SUMMARY
Project Type:	Street O Concrete O JPCP					
A AN	SUBGRADE				STRUCTURE	
	Known MRSG Value	28-Day Flex Strength	· ·	Subbase Layers		
	MRSG Value	3rd Point Loading 28-Day Fle	av Strangth	1 ~		
		ord Point Examing 20 Day 1 is	SX Strength	Laye	r Type Resili	ent Modulus Layer Thick
	psi		psi		JOINTED PLAIN CONCRETE S	URFACE
		Help (Resilient Modu		-		× •
		· · - · · · · · · · · · · · · · · · · ·	nus or the carg, and,			psi
	Modulus is a measure of the elastic resp loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v	various common subgrade so	and size after being bils.	stressed) under repeated	Override
		conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO	o return to its original shape a various common subgrade sc ASTM (Unified)	and size after being		Override
	loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils	and size after being bils.	stressed) under repeated	Override
	loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO	o return to its original shape a various common subgrade sc ASTM (Unified)	and size after being bils. CBR (%)	stressed) under repeated Resilient Modulus (psi)	Override
	loading. The table below shows typical C	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils	and size after being bils. CBR (%) 60-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000	Override
	loading. The table below shows typical C Description Gravel	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-a, poorly graded	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP	and size after being bils. CBR (%) 60-80 35-60	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000	Override
	loading. The table below shows typical C Description Gravel Coarse Sand	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP SW SP	and size after being bils. CBR (%) 60-80 35-60 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000	Override
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP SW SP	and size after being bils. CBR (%) 60-80 35-60 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000	Override
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel	conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Materials	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000	Cverride
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand	Conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material: A-2-4, gravelly	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000	Cverride
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel	Conse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000	Cverride
	loading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravely Sand Clayey Gravel	AASHTO Coarse of a soil (how well a soil is able to CBR and Resilient Modulus values for v AASHTO Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-6, gravelly	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sandy Gravel	AASHTO Coarse-Gra AASHTO Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-5, sandy	o return to its original shape a various common subgrade so ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM SM GC	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 25,000-18,000 25,000-39,000 15,000-25,000 15,000-25,000 15,000-25,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sand Clayey Sand	AASHTO Carse of a soil (how well a soil is able to CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-6, gravelly A-2-6, gravelly A-2-6, sandy	ASTM (Unified) ained Solis GW,GP SW SP Is with High Fines GM SM	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sandy Gravel	AASHTO Coarse of a soil (how well a soil is able to CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-6, gravelly A-2-6, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, sandy	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 25,000-18,000 25,000-39,000 15,000-25,000 15,000-25,000 15,000-25,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sand Clayey Sand Clayey Sand	AASHTO CBR and Resilient Modulus values for v CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-5, sandy A-2-6, gravelly A-2-6, sandy A-2-7, gravelly A-2-7, sandy Fine-Grai	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC ined Soils	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40 10-20	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000 9,000-15,000	Cverride
	loading. The table below shows typical C	AASHTO Coarse of a soil (how well a soil is able to CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-6, gravelly A-2-6, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, gravelly A-2-7, sandy	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40 10-20 4-8	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000 9,000-15,000 5,000-8,000	Cverride
	Ioading. The table below shows typical C Description Gravel Coarse Sand Fine Sand Silt Gravel Silt Gravel Silt Sandy Gravel Silty Sand Siltly Gravel Clayey Gravel Clayey Sand Clayey Sand Clayey Sand	AASHTO CBR and Resilient Modulus values for v CBR and Resilient Modulus values for v Coarse-Gra A-1-a, well graded A-1-a, poorly graded A-1-b A-3 Granular Material A-2-4, gravelly A-2-5, gravelly A-2-5, sandy A-2-5, sandy A-2-6, gravelly A-2-6, sandy A-2-7, gravelly A-2-7, sandy Fine-Grai	ASTM (Unified) ained Soils GW,GP SW SP Is with High Fines GM GC SC ined Soils	and size after being bils. CBR (%) 60-80 35-60 20-40 15-25 40-80 20-40 20-40 20-40 10-20	stressed) under repeated Resilient Modulus (psi) 32,000-39,000 22,000-32,000 15,000-25,000 12,000-18,000 25,000-39,000 15,000-25,000 9,000-15,000	Cverride

1 PROJECT LEVEL	2 PAVEMENT STRUCTURE	3 SUMMA
Project Type: Street O Concrete O JPC	P	
Calculated Minimum Thickness	Analysis and Guidance	and the former
Doweled Undoweled	SENSITIVITY CRACKING EROSION LOAD TRANSFER JOINT SPACING	3 DOWELED UNDOWELED
5.83 in 5.83 Recommended Design Thickness Doweled Undoweled	The key to excellent long-term performance of doweled joints is adequat Load transfer devices generally are recommended for jointed plain cond thickness greater than about 8 inches (200 mm) because traffic levels the resistance also are of a level that might result in pumping and faulting of included in the joints. When the initial design thickness is less than 8 inco- recommended only if faulting is the predicted cause of failure.	rete pavements that have an initial design nat require such thicknesses for fatigue f the joints if load transfer devices are not
6.00 in 6.00 Maximum Joint Spacing	in Although other geometries (e.g., elliptical, plate, square, etc.) and material zinc alloy-sleeved, etc.) can be used to transfer load across transverse pround and smooth steel dowel bars are the most commonly used load to for round steel dowel bars placed at 12 in. (300 mm) on-center are:	joints in jointed plain concrete pavements,
Doweled Undoweled	Recommended Dowel Bar Size	
	Recommended Dowel Bar Size Concrete Design Thickness, in.	Dowel Bar Size, in.
Doweled Undoweled	Concrete Design Thickness in	Dowel Bar Size, in. Dowel not recommended
	ft Concrete Design Thickness, in.	
	ft Concrete Design Thickness, in. less than 8 in. and cracking is predicated cause of failure	Dowel not recommended
	ft Concrete Design Thickness, in. less than 8 in. and cracking is predicated cause of failure less than 8 in. and faulting is predicted cause of failure	Dowel not recommended 1.00 in.
	ft Concrete Design Thickness, in. less than 8 in. and cracking is predicated cause of failure less than 8 in. and faulting is predicted cause of failure between 8 in. and 10 in.	Dowel not recommended 1.00 in. 1.25 in. 1.50 in. on load transfer technology geometry and material ffer opportunities to optimize/minimize steel s (see ACPA's DowelCAD 2.0). Other exceptions ate overlays on asphalt or composite pavements. ndations for Standardized Dowel Load Transfer

	1 PROJECT LEVEL	2 PAVEMENT STRU	ICTURE	3 SUMMARY
F	Project Type: Street O Concrete O JPCP			
	Calculated Minimum Thickness	Analysis and Guidance		
ne	Doweled Undoweled	SENSITIVITY CRACKING EROSION	LOAD TRANSFER JOINT SPACING	DOWELED UNDOWELED
	5.83 in 5.83 in		commended for jointed plain concr	e load transfer over the life of the pavement. ete pavements that have an initial design
	Recommended Design Thickness	SAVE DESIGN		the joints if load transfer devices are not
esign	Doweled Undoweled	Design Name	hickness is less than 8 inch cause of failure.	nes (200 mm), load transfer devices are
Sign _	6.00 in 6.00 in	Enter unique design name	te, square, etc.) and materi	als (e.g., stainless or microcomposite steel,
		Folder Name	-	bints in jointed plain concrete pavements, ansfer device. Typical size recommendations
	Maximum Joint Spacing	Project Folder V	0 mm) on-center are:	ansier device. Typical size recommendations
	Doweled	+ CREATE NEW FOLDER		
igns		01/5	s. in	Dowel Bar Size, in.
		SAVE	d cause of failure	Dowel not recommended
		less man e me result e p	d cause of failure	1.00 in.
1		between 8 in. a	nd 10 in.	1.25 in.
		greater than	10 in.	1.50 in.
rces	PavementDesigner.org	(see manufacturer's recommendations), content at the joints while causing minima also exist, like the lack of a need for load The National Concrete Consortium (NCC	and some non-uniform spacings off al impacts on pavement responses transfer devices in bonded concret b) also has developed, "Recommen	n load transfer technology geometry and material fer opportunities to optimize/minimize steel (see ACPA's DowelCAD 2.0). Other exceptions te overlays on asphalt or composite pavements. dations for Standardized Dowel Load Transfer National Concrete Pavement Technology (CP
and the second se				

	1 PROJECT LEVEL	2 PAVEMENT STRUC	TURE 3 SUMMARY
	Project Type: Street O Concrete O JPCP		
Home	Calculated Minimum Thickness Doweled Undoweled	Analysis and Guidance SENSITIVITY CRACKING EROSION LO	AD TRANSFER JOINT SPACING DOWELED UNDOWELED
	5.83 in 5.83	EDIT DESIGN DETAILS	equate load transfer over the life of the pavement.
	Recommended Design Thickness	DESIGN NAME OWNER/AG	yels that require such thicknesses for fatigue
+	Doweled Undowele	S&R Example 1	n 8 inches (200 mm), load transfer devices are
lew Design		DESIGNERS NAME PROJECT DESIGNERS NAME	CRIPTION materials (e.g., stainless or microcomposite steel,
	6.00 in 6.00	ROUTE	/erse joints in jointed plain concrete pavements,
	Maximum Joint Spacing	Overland Parkway	load transfer device. Typical size recommendations e:
Ay Designs	Doweled	ZIP CODE (Project location)	
محموم	11 ft 11		Dowel Bar Size, in.
			Dowel not recommended
			ID VIEW REPORT
(i)		DOWINEOAD AIN	1.50 in.
Resources	PavementDesigner.org	(see manufacturer's recommendations), and content at the joints while causing minimal ir	ing can, however, vary based on load transfer technology geometry and material I some non-uniform spacings offer opportunities to optimize/minimize steel mpacts on pavement responses (see ACPA's DowelCAD 2.0). Other exceptions
3 Support		The National Concrete Consortium (NCC) al	nsfer devices in bonded concrete overlays on asphalt or composite pavements. Iso has developed, "Recommendations for Standardized Dowel Load Transfer which are available through the National Concrete Pavement Technology (CP
	PAVEMENT STRUCTURE	Privacy Policy Ter	ms of Service SAVE GENERATE REPORT

		LOGOUT							_	
p		1	PROJE	CT LEVI						
		Project	Type: St	reet O	Concre	te O				
	1		Calcul	ated Mini	imum Th	nicknes	Pavem Project Description	ent <mark>Desi</mark>	gner.	org
Home			Doweled			Undo	Project Name: Designer's Name:	S&R Example Eric Ferrebee		wner: oute:
		C	5.83	in	C	5.8	Project Description:			
-			Recomm	nended [Design T	hickne	Design Summary Recommended De Calculated Minimu	sign Thickness:	Doweled 6.00 in. 5.83 in.	Und 6.0 5.8
New Design			Doweled			Undo	Pavement Struct	ure		
			6.00	in	C	6.0	SUBBASE Calculated Composite	4-Value of Substruct ayer Type	ure:	260 Resi
			Ma	ximum J	oint Spa	icing			PLAIN CON	
My Designs			Doweled			Undo	Granular Base	2	v)	25,000
			11	ft	C	1			SUBGR	ADE
B Resources	-		Paven	nentD)esigi	ner.	CONCRETE 28-Day Flex Strength:			ge Suppor
							Modulus of Elasticity:	4000000 psi	ма	crofibers i
Support							Project Level Spectrum Type: Design Life:	TRAFFIC	Collector 25 years	
	-3/	6					-	ER DEFINED TRAF		
		PAVEME	NT STRU	CTURE				Privacy Po	olicy	

Rou	te: Overla	and Parkway			
Doweled 6.00 in. 5.83 in.	Undoweled 6.00 in. 5.83 in.	Maximum Joint Spacing:	Doweled 11 ft.	Undoweled 11 ft.	uate load transfer over the oncrete pavements that he s that require such thicknes of the joints if load trans inches (200 mm), load trans the state of the second
-	260 psi/in Resilient Modulu RETE SURFACE 25,000	s Layer Thickness			iterials (e.g., stainless or se joints in jointed plain c d transfer device. Typical
SUBGRA	DE				Dowel
					Dowel not
					1
					1
					1
		su	BGRADE		d on load transfer techno s offer opportunities to op

Known MRSG Value: 5,000 psi

Terms of Service

85 %

15 %

DESIGN SUMMARY REPORT FOR JOINTED-PLAIN CONCRETE PAVEMENT (JPCP)

Wed Jan 30 2019 01:17:06 GMT-0600 (Central Standard Time)

Zip Code:

DATE CREATED:

ACPA

Edge Support:

Macrofibers in Concrete:

Yes

No

Reliability:

GLOBAL

Avg Trucks/Day in Design Lane Over the Design Life: 56

% Slabs Cracked at End of Design Life:

the life of the pavement. have an initial design nesses for fatigue nsfer devices are not transfer devices are

microcomposite steel, concrete pavements, al size recommendations

Dowel Bar Size, in.	
Dowel not recommended	
1.00 in.	
1.25 in.	
1.50 in.	

nology geometry and material optimize/minimize steel r oppo ses (see ACPA's DowelCAD 2.0). Other exceptions crete overlays on asphalt or composite pavements. nendations for Standardized Dowel Load Transfer the National Concrete Pavement Technology (CP

THANK YOU! Questions?

Eric Ferrebee, P.E. ACPA Director of Technical Services eferrebee@acpa.org 847–423–8709

Main Website | acpa.org Free Apps | apps.acpa.org Resources | resources.acpa.org Your Local Contact | local.acpa.org Pavement Design | PavementDesigner.org