

NZ Centre for Earthquake Resilience

Damage to Concrete Buildings with Precast Floors in the 2016 Kaikoura Earthquake

Rick Henry and Ken Elwood University of Auckland New Zealand

Resilient

MASSEY UNIVERSITY

14 Nov 2016 Kaikoura EQ

M_w 7.8 13 separate faults extending over~150 km

Wellington

Epicentre Kaikoura

Christchurch

Initial Reports in Wellington

- Significant shaking
- Non-structural damage
- Some isolated structural damage
- Lack of URM damage

11 0 5% damped elastic acceleration response spectra, Solid line = ULS, dotted=0.25*ULS @ CPLBduring the 2016 Kaikoura EQ NZS1170.5 Site Class D Z=0.4 R=1 Sp=1 1.2 Sensor Sensor di Sno Acceleration (g) 0.8 Spectral 0.6 0 đ 0.2 0 L 0.5 1.5 Period (s) 2.5

2

3

Statistics House

QuakeCoRE

NZ Centre for Earthquake Resilience

Statistics House

Double tee units collapsed from L1 and L2

Statistics House

Statistics House

a) North frame

Stats House Investigation, MBIE

Further Damage

- Impacted buildings in Wellington
 - Deep soil sites (basin effects)
 - Flexible moment frame buildings 5-15 storeys (spike in spectra between 1-2s)
 - Precast floor damage (long duration → frame elongation)
- Damage discovered during detailed examinations
- Initiated Wellington City Council targeted damage evaluations

Targeted Damage Evaluations

Site classes: Semmens et al 2010

- ✓ 64 inspected buildings with precast floors
- ✓ 8 others with significant damage

(b) Type of floor damage in those building presenting lateral system damage

Hollowcore seating details

Hollowcore floor damage

1994 Northridge Earthquake

Matthews and Bull (2004) 2-bay x 1-bay specimen

Matthews(2004)

Incompatible displacements

UoC test – Matthews (2004)

Assessment of Precast Floors

– Demands

Elongation

- Fenwick and Megget (1993)

Unidirectional Plastic hinge

Unidirectional plastic hinge: $e = \theta \frac{(d - d')}{2}$

Reversing Plastic hinge

Reversing plastic hinge: $e = C\theta \frac{(d - d')}{2}$ (NZS 3101: C=2.6)

Elongation

Rotation

• Movement at support ledge due to rotation added to elongation

Wall elongation

Kaikoura EQ damage

Drift <u>Capacity</u> of Hollowcore Floors – Failure modes

Loss of Seating (LOS)

Positive Moment Failure (PMF) Negative Moment Failure (NMF)

QuakeCoRE

NZ Centre for Earthquake Resilience

Objective:

• Determine inter-storey drift at which floor units no longer have <u>reliable</u> gravity load path.

Hollowcore Floors – test data (Des Bull + students)

Loss of Seating (LOS) - Spalling

• Kaikoura evidence

Loss of Seating (LOS)

Matthews (2004)

Kaikoura EQ damage

Negative Moment Failure (NMF)

Be aware of:

- Low gravity loads
- Strong or short starters

If NMF triggered → Limiting drift = 1%

Liew 2004

Hollowcore Floors – test data

- Validation of assessment

Drift at Loss of <u>Reliable</u> Load Path

Measured Drift Ratio (%)

Summary

- Wellington vs. Christchurch
 - Long duration \rightarrow frame elongation \rightarrow floor damage
- Precast floor damage
 - Most issues with older detailing in existing (80s) buildings
 - Damage often hidden *How to inspect?*
 - Floors fragile *easily damaged, but how to repair?*
- Precast floor assessment provisions developed
 - <u>www.eq-assess.org.nz</u>

NZ Centre for Earthquake Resilience

Thank you!

Questions?

MASSEY UNIVERSITY

Hollowcore

Examples: Beam Hinging

Plastic Hinge Damage

ENGINEERING

If ANY of the following apply, *plastic hinge* residual capacity may have been reduced by earthquake:

- 1. Total crack width in plastic hinge > 0.005d
- 2. Sliding has occurred on a crack
- 3. Wide (>0.5mm) diagonal cracks
- 4. Concrete degradation, indicated by significant spalling (concrete cover can be removed by hand)

If none apply:

Do not expect degradation in strength, deformation capacity, or energy dissipation; <u>but expect degradation</u> <u>in stiffness leading to larger displacement demands in next event</u>.

Critical Damage States – Primary structure

A: Local collapse risk (without aftershock)

- A1 Transverse cracking at ends of hollow core or ribs within 400mm of the support beam, plus either A2 Significant damage to support for flange-hung double
- tee floor units

B: Local or global collapse risk in aftershock

- B1 Transverse cracking at ends of hollow core floor units or ribs within 400mm of the supporting beam & not classified as A1
- B2 Reduced precast floor unit support
- B3 Loss of lateral support for columns over multiple stories
- B4 Shear damage to corner columns

C: Damage to primary structure posing lower risk

- C1 Plastic hinge damage
 C2 Web cracking in hollow core floor units
 C3 Longitudinal cracking of hollow core floor units
 C4 Mesh fracture in floor toppings

Very critical

Less critical

Types of Transverse Cracks

Examples: Support Damage

Mechanisms

 Past research (Fenwick and Bull) highlighted effects of elongation and poor precast support detailing

Transverse cracks at end of hollowcore

- Ends trapped or weak section at end of starters
- No reinforcement (long or trans)
- Prestressed stand not fully developed
- Positive or negative moment failure

(b) Positive moment flexural failure with critical section near front face of support (see Section A4)

(a) Negative moment flexural failure

Examples: Transverse Cracks

Examples: Transverse Cracks

Examples: Transverse Cracks

Longitudinal Cracks in Hollowcore

Topping Cracks

Repair and Retrofit

• For rotation only case, consider unit movement due to starter bar plastic strain:

Unit movement:
$$\theta_{p}$$

 $\delta_{el_unit} = 1.3 \frac{\theta_{p}}{2} (h_{L} - d') \le 0.018 h_{L}$
 h_{L} -d'

- Most units considered as restrained (i.e. use $\delta_{el}/2$)

Chris Poland

Retrofit support:

- Effectively same as shorter starters!
- Keep retrofit supports below the unit to ensure no contact! (Stay tuned for results from ongoing research.)