

The rheology of control flow concrete

G.T. Harris, E. Burns, K.-A. Rieder, J. Curto, N. Tregger

A construction products technologies company

ACI 237R-07: Self-consolidating concrete

"...highly flowable, nonsegregating concrete that can spread into place, fill the formwork, and encapsulate the reinforcement without any mechanical consolidation.

In general, SCC is concrete made with conventional concrete materials and, in some cases, with a viscositymodifying admixture."

Mix proportioning

Conventional concrete

Self-consolidating concrete

Challenges in producing ready-mix SCC

- Mix proportioning is complicated
- High cementitious factor
 - Significant cost increase
 - Difficult to finish
 - Increased shrinkage
- Difficult to produce
- Limited applications

To mitigate risk, you need an increase in both expertise/experience as well as material costs

What if we could have best of both worlds?

- Typical mix proportioning
 - Strength: 3500-6500 psi [25-45 MPa]
- Lower cementitious content
- Superior moisture tolerance
- Higher segregation resistance
- Easier finishability

- Slump flows 16-25" [400 to 635 mm]
- Minimal vibration
- Excellent flowability retention for more than 1 hour
- Fast pumping, rapid placement

Novel admixture formulation

Water reduction

Control flow concrete

- <u>Is</u> Conventional Concrete with enhanced flow using novel blend of admixtures
- <u>Is not</u> Self Consolidating Concrete with reduced flow

Control flow concrete

Conventional concrete

Slump: 6-8"

Control flow concrete

Slump flow: 18-22"

Self-consolidating concrete

Slump flow: 25-30"

Control flow concrete

Static and dynamic yield stresses

Static yield stress:

- stress required to initiate flow
- (rest to flow)

Fig. 1: Representation of Bingham model. The stars represent experimentally determined data points that are approximated using a straight line

Dynamic yield stress:

- stress at which flow stops
- (flow to rest)

CI June 2007, ACI 238

Role of Rheology in Achieving Successful Concrete Performance

Static yield stress

Stress growth test

Flow curve data example

Flow curve results

Balancing rheology

16

Performance comparison example

	3500 PSI ready mix with HRWR (Conventional)	3500 PSI ready mix with Control Flow Admixture	Self Consolidating Concrete (SCC)
Self-consolidating	No 🖡	Semi-consolidating	Yes
Placement	Difficult 👢	Easy 🕇	Easy
Labor demand	High 📕	Low 🕇	Low 🕇
Segregation risk	Low 🕇	Low	High 📕
Powder content	500-600 lbs/yd³ 🛖	500-600 lbs/yd³ 🛖	>700 lbs/yd³
Mix design adjustments	None 🕇	None or Minimal (robust to manufactured Sand)	Yes (high quality fine aggregates and Needs more powder)
Moisture tolerance	Tolerant 🕇	Tolerant 🕇	Needs very close QC 🖡
QC need	Routine	Routine	Extra effort
Drying shrinkage	ОК 🕇	OK 🕇	Higher

Conventional Mix Design with Unconventional Performance

Project highlights with control flow concrete

Landmark 81 Ho Chi Minh City, Vietnam

Mayo Clinic & MD Anderson Cancer Center Jacksonville, FL

Tanjong Pagar Centre Singapore

Landmark 81: Ho Chi Minh City

Tallest building in Vietnam 11th Tallest building in the world

GCP's Dr. Jiang Jiabiao Final pour, at 400m

applied technologies