

Seismic Evaluation of Beam-Column Assemblages Strengthened with FRP and Anchored with Spike Anchors

Elias I. Saqan, Ph.D.

Chair and Professor of Civil Engineering American University in Dubai, UAE

AUD AMERICAN UNIVERSITY IN DUBAI

Hayder A. Rasheed, Ph.D.

Professor of Civil Engineering Kansas State University, Kansas

Tarek Alkhrdaji, Ph.D.

Vice President Structural Technologies, Maryland

Presentation Outline

- Research Objectives
- Experimental Program
- Material Properties
- Loading Protocol
- Experimental Results
- Conclusions

Research Objectives

- To evaluate the seismic performance of RC frame elements reinforced with modern code requirements and strengthened in flexure with CFRP fabric for increased demand
- To examine the delay or control of CFRP debonding using different arrangements of spike anchors and full wraps

RC Column Ductility Improvement

Experimental Program

- Five large scale beam-column assemblages were built
- > All specimens had same steel reinforcement details
- ➢ One control specimen (BCA-1)
- One specimen strengthened with CFRP fabric and anchored with full wraps (BCA-2)
- Three specimens strengthened with CFRP fabric and anchored with different arrangements of spike anchors

Experimental Program

- One specimen strengthened with CFRP fabric and anchored with a single spike anchor replacing each full wrap (BCA-3)
- One specimen strengthened with CFRP fabric and anchored with five spike anchors in plastic hinge region "dense arrangement" (BCA-4)
- One specimen strengthened with CFRP fabric and anchored with a parallel spike anchor confined with full wraps (BCA-5)

Specimens Dimensions and Internal Reinforcement

aci

Strengthened with CFRP Fabric and Full Wraps BCA-2

Strengthened with CFRP Fabric and Arrangement 1 Spike Anchors – BCA-3

Strengthened with CFRP Fabric and Arrangement 2

Strengthened with CFRP Fabric and Arrangement 3 Spike Anchors and Wraps–BCA-5

aci

Material Properties

Specimen	Day of testing concrete strength (MPa)
Control – BCA-1	32.0
Wraps – BCA-2	31.9
Spike Anchors 1 – BCA-3	35.1
Spike Anchors 2 – BCA-4	34.5
Spike Anchors 3 – BCA-5	29.2

CFRP Properties*

Fiber Type	Nominal Thickness or Diameter t _f (mm)	Ultimate Tensile Strength f _{fu} (MPa)	Elongation at Break ε _{fu} (%)	Modulus of Elasticity E _f (GPa)
Carbon Dry Fiber Fabric	0.33	4830	2.1	227.5
Carbon Cured Laminate	1.0	1240	1.7	73.77

* As provided by the manufacturer

Control Specimen – BCA-1

Specimen Anchored with Wraps – BCA-2

Specimen Anchored with Spike Anchors 2 – BCA-4

Loading Protocol

Hysteretic Response

Control – BCA-1

Hysteretic Response

Anchored with Wraps – BCA-2

Hysteretic Response

Anchored with Spike Anchor 1 - BCA-3

Hysteretic Response

Anchored with Spike Anchor 2 – BCA-4

Hysteretic Response

Anchored with Spike Anchor 3 and Wraps – BCA-5

Cracking, Yielding, and Ultimate Loads

Specimen	Cracking	Drift	Yielding	Drift	Average	Drift	%
	Load	ratio	Load	ratio	Ultimate	ratio	increase
					Load		in
	kN	%	kN	%	kN	%	strength
	(kip)		(kip)		(kip)		
BCA-1	13.6	0.10	33.4	0.92	40.9	2.00	
	(3.06)		(7.51)		(9.20)		
BCA-2	18.5	0.25	37.9	0.65	48.8	1.50	19.3
	(4.16)		(8.52)		(10.97)		
BCA-3	17.8	0.06	37.4	0.65	46.5	1.35-	13.7
	(4.00)		(8.41)		(10.45)	1.50	
BCA-4	23.0	0.10	47.5	0.85	53.95	1.46-	31.9
	(5.17)		10.68)		(12.12)	1.50	
BCA-5	20.0	0.13	47.9	0.93	58.75	1.45-	43.6
	(4.50)		10.77)		(13.20)	1.49	

Peak-to-Peak Stiffness Degradation

Total Energy Dissipation

Energy Dissipated in the First Cycle of Each Set of Drift

□ BCA-1 ■ BCA-2 □ BCA-3 □ BCA-4 □ BCA-5

Conclusions

- All strengthening schemes improved the behavior compared to that of the control specimen in terms of:
 - Strength
 - Total energy dissipated
 - Stiffness degradation
- Providing dense spike anchors is structurally equivalent to the hybrid scheme combining parallel anchors and full wrapping

Conclusions

- Dense spike anchor scheme out-performed the full wrapping
- The total energy dissipated during the testing was the greatest for the dense spike anchor configuration
- Further studies with various ratios of axial to bending forces are required to better understand the performance of these anchor systems

Acknowledgment

AUD Lab Technicians: Nehemiah Paragoso Loreto Araojo