Guidance on Nonlinear Modeling of RC Buildings

Laura N Lowes, University of Washington

Dawn E Lehman, University of Washington

ATC 114 Project Directors: Deierlein, Hamburger, Haselton

ATC 114 Project Team and Working Group Members: Bono, Ghannoum, Hachem, Hooper, Lignos, Malley, Mazzoni, Pekelnikcy, Pujol, Somers, Uang, van de Lindt, Cheng, Elkady, Epackachi, Hartloper, Koliou, Sloat, Cook, McFarlane, Ozkula, Yang, Zhou

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

NIST GCR 17-917-45

ATC 114 Project

- > Funded by NIST
- > Objective: provide recommendations for updating ASCE 41

Mone	ptonic Curve	Recommended
TA.	m	Modeling Parameters
Ð.	<u></u>	and Acceptance
-	Collapse Protocol	Criteria for Nonlinear
0.1 tion θ [rad	0.15 (j]	Analysis in Support of
		Seismic Evaluation,
		Retrofit, and Design

Applied	Techno	logy (Counci

This publication is available free of charge from: https://doi.org/10.6028/NIST.GCR.17-917-45

NIST GCR 17-917-45

ATC 114 Project

- > Funded by NIST
- > Objective: provide recommendations for updating ASCE 41

Recommended Modeling Parameters and Acceptance Criteria for Nonlinear Analysis in Support of Seismic Evaluation, Retrofit, and Design

RC Frames RC Flexure-controlled walls RC Shear-controlled walls

Guidelines for RC Frames

> Multiple types of models addressed

- Concentrated-hinge component models
 - > Beams, columns, joints, gravity system connections
- Fiber-type component models
 - > Section modeling
 - > Material modeling
 - > Shear & bond-slip deformations
- Continuum modeling (discussed)
- > New and existing construction are addressed

Concentrated Hinge Models

(Figure 31, NIST GCR 17-917-46v3)

"New Ideas" for Concentrated Hinge Models

- Peak strength, strength degradation and ductility are load history-dependent
- Use of cyclic backbones:
 - Conservative as to deformation capacity
 - Unconservative as to peak force demand
- Adaptive models capable of replicating different load histories are preferred
 - Green: fewer damaging cycles
 - Red: many damaging cycles

"New Ideas" for Concentrated Hinge Models

(Figure 4-7, NIST GCR 17-917-46v3; data and figures from Nojavan et al., 2014, 2016)

Guidelines for Flexural RC Walls (NIST GCR 17-917-45)

Modeling approach must simulate these failure modes OR Rules must define walls for which the modeling approach CAN simulate these failure modes

Tension-Controlled Flexural Failure (BR):

(low ρ_{long} , low axial load, low shear, low strain capacity steel)

Dazio et al. (2009)

Compression-Controlled Flexural Failure (CB):

(high ρ_{long} , high axial load, low shear, low CSAR)

Dazio et al. (2009)

Compression-Shear Failure (CS):

(high axial load, high shear, high CSAR)

Vallenas et al. (1979)

Recommendations for Modeling

> Multiple approaches may be used to simulate flexural wall response to earthquake loading

Force-Based Fiber-Type Beam-Column Element (OpenSees)

 Force-Based Fiber-Type Beam-Column Elements Assumptions: linear moment distribution, constant axial load -> solve for section strain and curvature to satisfy compatibility req'ts.

Displacement-Based Fiber-Type Beam-Column Element (OpenSees)

- Assume linear curvature and constant axial strain distribution
- **Compute** member end (nodal) forces and moments, explicitly from curvatures and strains: ϕ & ε -> section M & P -> nodal M & P & V

Displacement-Based Fiber-Type Wall / Planar Element (PERFORM)

- Element: assume constant curvature and constant axial deformation
- Compute member end (nodal) forces a explicitly from curvatures and strains: φ & ε-> section M & P -> nodal M & P & V Nonlinear fiber-type

Traditional Concrete Model

Regularized Concrete Model

Regularized Concrete Model

- Regularize material response:
 - Stress vs. deformation (not strain) considered to be the fundamental material property.
 - Testing to demonstrate this by Jansen and Shah (1997) and Nakamura and Higai (2001)
 - Regularization of material response for beam-column elements proposed by Coleman and Spacone (2001)

(image from Dragovich)

Δ

Regularized Concrete Model: Beam-Column Element (OpenSees)

For a given compressive energy, the strain capacity can be determined from the length, LIP

Fiber Section: Steel Model

With and Without Regularization

 Without regularization, mesh-dependent results; behavior is more brittle as element length decreases.

RESULTS: Regularized FBBC Element Model

	<u>V_{max,sim.}</u> V _{max}		$\frac{\Delta_{yield}}{\Delta_{yi}}$	d,sim. eld	$\frac{\varDelta_{u,sim.}}{\varDelta_u}$		
Failure Mode (3 EL / 7 IP)	Mean	COV	Mean	COV	Mean	COV	
Crushing (12 Specimen)	0.94	0.04	0.98	0.10	1.02	0.17	
Buckling or Rupture (9 Specimens)	0.99	0.06	0.99	0.10	1.12	0.25	
All Flexure	0.96	0.04	0.98	0.06	1.06	0.17	
C-Shaped Walls (6 Specimen)	0.97	0.07	1.07	0.11	0.99	0.17	

- Similar results for DBBC element model
- Similar results for PERFORM fiber-shell model

Lumped-Plasticity Model

- $L_p = 0.5 I_w$ or other.
- Use reduced effective flexure and shear stiffness values outside of hinge.
- Hinge response defined, in part, by fiber-type section model.
 - Regularized materials required.
 - L_P is regularization length.
 - Use fiber section model to define entire response history or just envelope.

Deformation Capacity - "a"

- For "pure" flexure-controlled walls (BR or CB)
 - Fiber section model w/ regularized materials
- For flexure-shear walls
 - Rotation capacities per continuum analysis by Whitman (2015) or per experimental data by Abdulla and Wallace (ACI 369 activity)
- For non-planar walls
 - Rotation capacities per continuum analysis by Ahmed, et al. (in progress) or per experimental data by Abdulla and Wallace (ACI 369 activity)

Failure Mode as a function of shear demand and cross-sectional aspect ratio

Rotation capacity as a function of failure mode

		Rotational Hinge	Fiber Hinge	Fiber-Type Line Element	Fiber-Type Planar Element	Continuum Model		
Planar Walls w/	Interstory Drift (%)	2.0 (0.3)		vorify model				
moderate shear and/or	Hinge Rotation (rad)	0.016 (0.3)	OFTIO					
IOW CSAR	Concrete Strain		$\frac{G_{fc}}{G_{fc}} - \frac{0.8f_p}{G_{fc}} + \varepsilon_{0c}$	with $L = hinge left$	ength (fiber hinge)	, section integration length		
			$0.6f_{cc}L = E_0$	(FT line ele.), ele	ment height (FT p	planar ele., continuum ele.)		
Planar Walls w/ high	Interstory Drift (%)	1.2 (0.16)	Model defines stiffnes	s and strength; dr	ift / rotation limits	OPTIONAL - use drift and		
shear and/or high	Hinge Rotation (rad)	0.009 (0.15)	define c	nset of strength lo	DSS	rotation to verify model		
CSAR	Concrete Strain					$G_{fc} = 0.8 f_p$		
		NA	NA	NA	NA	$\frac{1}{0.6f_{cc}L} = \frac{1}{E_0} + \varepsilon_{0c}$		
						with $L =$ element height		
Symmetric Flanged	Interstory Drift (%)	Euturo Work			<u> </u>	OPTIONAL - use drift and		
Walls w/ flanges in T/C	Hinge Rotation (rad)		- ruture	rotation to verify model				
	Concrete Strain					$G_{fc} = 0.8 f_p$		
		NA	NA	NA	NA	$\frac{1}{0.6f_{cc}L} - \frac{1}{E_0} + \varepsilon_{0c}$		
	r					with $L =$ element height		
Asymmetric Flanged	Interstory Drift (%)					OPTIONAL - use drift and		
Walls; Symmetric	Hinge Rotation (rad)				rotation to verify model			
Flanged Walls w/ wall toes in T/C	Concrete Strain					$G_{fc} = 0.8 f_p$		
		NA	NA	NA	NA	$\frac{1}{0.6f_{cc}L} - \frac{1}{E_0} + \varepsilon_{0c}$		
						with L = element height		

		Rotational Hinge	Fiber Hinge	Fiber-Type Line Element	Fiber-Type Planar Element	Continuum Model	
Planar Walls w/ moderate shear and/or	Interstory Drift (%) Hinge Rotation (rad)	2.0 (0.3) 0.016 (0.3)	- OPTIONAL - use drift and rotation limits to verify model				
low CSAR	Concrete Strain		$\frac{G_{fc}}{0.6f_{cc}L} - \frac{0.8f_p}{E_0} + \varepsilon_{0c}$ with L = hinge length (fiber hinge), section integration length (FT planar ele., continuum				

		Rotational Hinge	Fiber Hinge	Fiber-Type Line Element	Fiber-Type Planar Element	Continuum Model
Planar Walls w/	Interstory Drift (%)	2.0 (0.3)		verifymedel		
moderate shear and/or	Hinge Rotation (rad)	0.016 (0.3)	OFILI			
IOW CSAR	Concrete Strain		$\frac{G_{fc}}{G_{fc}} = \frac{0.8f_p}{1000} + \varepsilon_0$	with $L = hinge left$	ength (fiber hinge)	, section integration length
			$0.6f_{cc}L = E_0 + C_{0c}$	(FT line ele.), ele	ment height (FT p	planar ele., continuum ele.)
Planar Walls w/ high	Interstory Drift (%)	1.2 (0.16)	Model defines stiffnes	s and strength; dr	ift / rotation limits	OPTIONAL - use drift and
shear and/or high	Hinge Rotation (rad)	0.009 (0.15)	define c	nset of strength lo	DSS	rotation to verify model
CSAR	Concrete Strain	ΝΔ	ΝΔ	NΔ	ΝΔ	$\frac{G_{fc}}{0.6f} - \frac{0.8f_p}{E} + \varepsilon_{0c}$
						with L = element height

		Rotational Hinge	Fiber Hinge	Fiber-Type Line Element	Fiber-Type Planar Element	Continuum Model
Planar Walls w/ moderate shear and/or	Interstory Drift (%) Hinge Rotation (rad)	2.0 (0.3)	OPTIO	verify model		
low CSAR	Concrete Strain	0.010 (0.3)	$\frac{G_{fc}}{0.6f_{cc}L} - \frac{0.8f_p}{E_0} + \varepsilon_{0c}$	with $L =$ hinge let (FT line ele.), ele	ength (fiber hinge) ment height (FT p	, section integration length blanar ele., continuum ele.)
Planar Walls w/ high	Interstory Drift (%)	1.2 (0.16)	Model defines stiffnes	s and strength; dr	ift / rotation limits	OPTIONAL - use drift and
shear and/or high	Hinge Rotation (rad)	0.009 (0.15)	define o	nset of strength lo	DSS	rotation to verify model
CSAR	Concrete Strain	NA	NA	NA	NA	$\frac{G_{fc}}{0.6f_{cc}L} - \frac{0.8f_p}{E_0} + \varepsilon_{0c}$ with L = element height
Symmetric Flanged	Interstory Drift (%)	_				
Walls w/ flanges in T/C	Hinge Rotation (rad)					rotation to verify model
	Concrete Strain	NA	NA	NA	NA	$\frac{G_{fc}}{0.6f_{cc}L} - \frac{0.8f_p}{E_0} + \varepsilon_{0c}$ with L = element height
Asymmetric Flanged	Interstory Drift (%)	Future Work>			OPTIONAL - use drift and	
Walls; Symmetric	Hinge Rotation (rad)				rotation to verify model	
Flanged Walls w/ wall toes in T/C	Concrete Strain	NA	NA	NA	NA	$\frac{G_{fc}}{0.6f_{cc}L} - \frac{0.8f_p}{E_0} + \varepsilon_{0c}$ with L = element height