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Measurement Science – Linking microstructure formation to 
macroscopic measurements

• Rheology and electrical conductivity are well known concrete test
• Small angle neutron scattering provides microstructure information 

3-D Printing/Additive Manufacturing

Objective: Develop measurement science tools (metrologies, standards, and guidance documents) for 
quantitatively evaluating the critical material properties and ensuring the desired field performance of 
cement-based additive manufacturing.

How do we ensure a process or material is suitable for AM? 

Standards Test Methods – Develop standard test methods for 3-D 
printing

• Verify Machine and material performance
• Compressive strength, slump, setting time, printability

Technology Transfer – Form consortia to aid industry
• Correlating off-line measurements to print quality
• In-situ and in-process measurements
• Hardened properties and scaling



• Print is possible during the first ~2 h after mixing

• Printed Mixtures = 

• Rheology during induction period controlled by availability of 
precipitation sites

• Mix B and C -> same surface area, increase D50

Limestone Cements

Mix A Mix B Mix Ba Mix C

Limestone 1 (kgm−3) 786.5 393.3 393.3 519.1

Limestone 2 (kgm−3) -- 3933 -- --

Limestone 3 (kgm−3) -- -- 393.3 267.4

Cement (kgm−3) 786.5 786.5 786.5 786.5

Powder (kgm−3) 1573.1 1573.1 1573.1 1573.1

Water (kgm−3) 440.6 440.6 440.6 440.6

HRWRA (mL kgcem
−1 ) 4 4 4 4

Water/powder 0.28 0.28 0.28 0.28

D50 (μm) 8.7 5.6 5.6 6.6

Surface area (m−2kg−1) 962.5 2357 3060 2389

Density (kgm−3) 2014 2014 2014 2014

VF Water 0.44 0.44 0.44 0.44

Normalizing heat release by 
total surface area (cement + 
LS) collapse curves      

Single 
Peak
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• The “printing” test should test material ability

• Retain shape after deposition

• Number of layers it can support

• Print quality is poor when…

• Materials starts and stops flowing

• Print speed is too fast

• Nozzle diameter is too small or flow rate too fast.

• Print quality is dependent on both material 
formulation and printing parameters

• Proposed test print – a tall, thin structure

• Print 25 layers,  h = 3 mm

• Wall Width – 45 mm

• Filament width – w = 4 mm

• Flow rate – F = 13 mm3/s
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Printing Mix A

t = 50 min

• First free standing structure
• Pumping – many air bubbles
• Printed 4 layers before collapse of first layer 



Printing Mix A

t = 60 min

• Pumping – many air bubbles
• Printed 6 layers before collapse of first layer
• Difficulty with start stop – indicated by discontinuous purge 

layer 

Discontinuities 
resulting from poor 
pumping performance 
caused layer instability

Pumping difficulties: 
air bubbles present in 
piping



Printing Mix A

t = 65 min

• Pumping – many air bubbles
• Printed 9.5 layers before collapse of first layer
• Difficulty with start stop – indicated by discontinuous purge 

layer
• Collapse started at far end of structure 

Collapse initiated at 
far end of structure –
likely due do a void 
and instability due to 
nozzle movement



Printing Mix A

t = 70 min

• Pumping – many air bubbles
• Printed 7 layers before collapse of first layer
• Improved start stop performance
• Difficulty with “turns” – moving left to right, then right to left.
• Jamming in piping – not able to printer after this point

Mass of material over 
small area overcame 
yield stress and caused 
collapse



Printing Mix B

t = 30 min

• No pumping issues – no air bubbles
• Printed 15 layers before collapse of first layer
• First layer collapse



Printing Mix B

t = 40 min

• Printed 20 layers before collapse of first layer
• Material on nozzle pull column over

• Nozzle moving to left
• Material is attached to nozzle 
• This creates a bending moment which exceeds yield stress at 

collapse point

Collapse initiated 

Ԧ𝑣𝑛𝑜𝑧𝑧𝑙𝑒

𝑀



Printing Mix B

• Bending moment induced collapse observed for prints 3 and 4

• Collapse may also occur above bottom layer – at a defect

t = 47 min

• Printed 20 layers

t = 53 min

• Printed 23 layers

Collapse initiated

Collapse initiated



Printing Mix B

• Similar collapse mechanisms occur for next two prints.

• Printing difficulties begin at 75 min with large voids forming in piping system

t = 75 min

• Print 9 layers before first void.
• Print 13 layers before first 

missing 14th layer

No material 
deposited on 14th

layer due to 
pumping difficulties

Air void in piping caused 
discontinuity in deposited layer

t = 80 min

• Pumping challenges caused 
several missed layers at 
beginning of print.



Printing Mix C

t = 12 min

13 layers

t = 53 min

24 layers

t = 71 min

0 layers



• Stiff materials difficult to test
• Switch tool geometry to avoid slippage

• Yield Stress measurements made with a strain 
controlled rheometer

• Serrated 25 mm parallel plate

• Strain rate: ሶ𝛾 = 1.0 1/𝑠

• Assess change in materials yield stress with time

• Two different material responses

• Mix A: low initial yield stress then rapid increase

• Mix B: high initial yield stress but steady increase

• Mix C: similar yield stress evolution to Mix B

Yield Stress

Yield Stress



• Tresca Failure Criterion:

• Estimated time to first layer (𝑘 = 1):

• As sample ages, failure transitions 
from failure of first layer to a 
buckling-like failure.

• Bucking failures are governed by 
geometry and elastic modulus.

• Can occur at stress below yield stress

Analyzing Test
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• Failure governed by first 
layer

• Yield stress as a function of 
time after mixing: 

𝜏𝑦 𝑡 = 𝛼𝑒𝛽𝑡

• Failure of structure changes 
and occurs before collapse 
of first layer

Calc. 𝑡1 Meas. 𝑡1

Mix A 11 min 50 min

Mix B 0 min 30 min



• Rate at which material recovers yield stress

• Measure structural rebuilding by with stress 
controlled rheometer

• Shear at 100 1/s for 60 s.

• Apply stress to material – 10 % of measured yield 
stress – measure shear rate required to maintain 
stress level

• Fit model to strain rate decay

• Mix B recovered yield stress faster than Mix A for 
all times tested

• Beyond 67 min material began to slip in rheometer.  
For Mix B printing is possible up to 83 min.

• Below 𝜃 = 0.125 𝑠, both Mix A and B are printable

• Mix C is printable from start

Structure Rebuilding

Kawashima et al. Cem. Concr. Res. (2013)



• Lagrangian Formulation of Generalized Navier-Stokes Equation

𝜌
𝜕𝑣

𝜕𝑡
=

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑘
𝜇

𝜕𝑣𝑖
𝜕𝑥𝑘

+
𝜕𝑣𝑘
𝜕𝑥𝑖

−
2

3
𝛿𝑖𝑘∇ ⋅ 𝑣 +

𝜕

𝜕𝑥𝑖
𝜁∇ ⋅ 𝑣

• Lubrication Forces:
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Scaling from Paste to Mortar: SPH Model

Rigid body represented by 

“freezing” a subset of particles 

and moving them according to 

the Euler equations.

SPH interactions transfer   

momentum, density according to 

Gen. Navier Stokes equations

• Particles carry fluid properties

Velocity, Density

Temperature

Strain Rate

Particle-particle 

interactions

• Silica Spheres in 5 % 
Methylhydroxypropyl -
cellulose in water 

• Experimental measurements
• Simulation results

R



• Preliminary Simulations: w/c = 0.48, 1 mm sand in        
∅3 cm pipe

• Matrix fluid assumed power-law behavior of 𝑛 =
1

2

• ∆𝑃 = 𝑔 across length of pipe in simulation

• Changing applied pressure, 𝑉 ~ 𝑔1/𝑛

• Flow rage scales proportional to 𝑔2

• Locally high shear rates produce lubrication layer 
• Fully developed flow

• 𝑛 = 0 plug flow; 𝑛 =
3

2
 Shear thickening

• Shear induced particle migration: particles flow toward 
center of pipe, altering w/c. Occurs within 4 to 5 pipe 
diameters.

SPH Model: Flow in a Pipe

Particle migration

w/c = 1.0 near 
surface of filament

𝑡 = 𝐸𝑄𝐵𝑀

𝑡 = 0



• Continue studies to understand relationship between material properties, machine 
settings, print quality, and print performance.
• Control onset of initial set. 
• Material delivery.

• Codes and Standards
• Measuring compressive strength, rheology, and other material properties.
• Performance-based specification of materials!

• In-line and in-situ measurements of material properties – NDT/NDE
• Cold joint and flaw detection.
• Strength build up.

• Machine design
• Nozzle design – influence on print quality.

• What about reinforcements?
• Fibers – orientation and effectiveness.
• Parallel printing – incorporate other AM techniques to create reinforcement.

• Consortium: Metrology of Additive Construction by Extrusion (MACE)
• Partnership between government, industry, and academia

Lab to Commercialization



Metrology of Additive Construction 
by Extrusion

Objective will be achieved by identifying and then 
translating cementitious material measurements to in-line 
or in-process measurements for quality assurance and 
success of the Additive Construction by Extrusion process. 

Part 1: Correlating off-line Measurements to Print Quality

Part 2: In-situ and In-process Measurements

Part 3: Hardened Prosperities and Scaling up to Concrete

Now accepting members!

Interested? Contact: 

Scott Jones at scott.jones@nist.gov

NIST NRC Postdoctoral Research 
Associateships Program

Microstructural Modeling of Cement-based Materials

Adviser: Jeffrey W. Bullard (Jeffrey.bullard@nist.gov) 

Rheological Measurements of Cementitious Materials

Adviser: Nick Martys (nicos.martys@nist.gov)

Working with NIST

mailto:scott.jones@nist.gov
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Evaluate material material performance:

• Pumpability - The ease and reliability with which material is moved 
through the delivery system

• Printability - The ease and reliability of depositing material through a 
deposition device

• Buildability - The resistance of deposited wet material to deformation 
under load

• Open Time - The period where the above properties are consistent 
within acceptable tolerances

Control material rheology:

• Limestone powder additions

• Cement:Limestone - 67:33, 80:20, 50:25:25 by mass

• Control hydration kinetics

• Slow hydration – sodium gluconate and sucrose: 1 - 2 μL/g-powder 

• Accelerate hydration – Aluminum sulfate: 0.03 g/g-paste (3 %)

Rheology Measurements:

• Yield stress and  viscosity using parallel plate geometry

• Mini-slump measurements

Relating Rheology to Printing

References:
Lim et al. Automation in Construction (2012) 21:262–268
Le et al. Materials and Structures (2012) 45:1221–1232



Cement Paste Printer
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• Retarder dosage of 1.33 μL/g-powder produced 5 h dormant period

• Initial spike due to mixing and, possibly, ettringite formation

• Beyond dormant period, hydration is controlled by water content 
and particle size of powder

• Injection of accelerator causes initial increase in yield stress 
likely due to ettringite formation

• Remixing breaks down the structure causing a drop in yield 
stress

• However, without remixing, hydration product formation 
causes continuous increase in yield stress

Increase Working Time with Admixtures

Without remixing, hydration products continue to form, 
increasing yield stress



• Rheology, conductivity, and Neutron scattering in parallel 
measurements
• SAOS/LAOS

• Linking structure formation to rheology and conductivity 
measurements

• Study effect of hydration retarders and accelerators on structure 
formation

Dielectric RheoSANS
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Figure 2: Pictures of Components Dielectric RheoSANS Geometry with Labels Defining Terms Below. Please click here to view a larger

version of this figure.

Figure 3: a.-d.) Pictures of Procedure for Installing the Slip-ring onto the Dielectric RheoSANS Geometry, and e.) Picture of Fully

Assembled Dielectric RheoSANS Geometry. Please click here to view a larger version of this figure.

Figure 4: Schematic of Beam Path through Oven Geometry and Dielectric RheoSANS Geometry. Please click here to view a larger version

of this figure.
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