Rheological Control of 3D Printable Cement Paste and Mortars

Scott Z. Jones¹, Dale P. Bentz¹, Nicos S. Martys¹, William L. George¹, and Austin Thomas^{1,2}

¹National Institute of Standards and Technology

²University of New Haven

scott.jones@nist.gov

3-D Printing/Additive Manufacturing

Objective: Develop measurement science tools (*metrologies, standards,* and *guidance* documents) for quantitatively evaluating the critical material properties and ensuring the desired field performance of cement-based additive manufacturing.

How do we ensure a process or material is suitable for AM?

Measurement Science – Linking microstructure formation to macroscopic measurements

- Rheology and electrical conductivity are well known concrete test
- Small angle neutron scattering provides microstructure information

Standards Test Methods – Develop standard test methods for 3-D printing

- Verify Machine and material performance
- Compressive strength, slump, setting time, printability

Technology Transfer – Form consortia to aid industry

- Correlating off-line measurements to print quality
- In-situ and in-process measurements
- Hardened properties and scaling

Limestone Cements

engineering laboratory

- Print is possible during the first ~2 h after mixing
- Printed Mixtures =
- Rheology during induction period controlled by availability of precipitation sites
- Mix B and C -> same surface area, increase $\rm D_{50}$

	Mix A	Mix B	Mix Ba	Mix C
Limestone 1 (kg m ^{-3})	786.5	393.3	393.3	519.1 🕇
Limestone 2 (kg m ^{-3})		3933		
Limestone 3 (kg m ^{-3})			393.3	267.4 🗸
Cement (kg m ^{-3})	786.5	786.5	786.5	786.5
Powder (kg m ^{-3})	1573.1	1573.1	1573.1	1573.1
Water (kg m ^{-3})	440.6	440.6	440.6	440.6
HRWRA (mL kg ^{-1} _{cem})	4	4	4	4
Water/powder	0.28	0.28	0.28	0.28
D ₅₀ (μm)	8.7	5.6	5.6	6.6
Surface area $(m^{-2}kg^{-1})$	962.5	2357	3060	2389
Density (kg m $^{-3}$)	2014	2014	2014	2014
VF Water	0.44	0.44	0.44	0.44

Cement Paste Printer

Testing material for "printability"

- The "printing" test should test material ability
 - Retain shape after deposition
 - Number of layers it can support
- Print quality is poor when...
 - Materials starts and stops flowing
 - Print speed is too fast
 - Nozzle diameter is too small or flow rate too fast.

- Print quality is dependent on both material formulation and printing parameters
- Proposed test print a tall, thin structure
 - Print 25 layers, h = 3 mm
 - Wall Width 45 mm
 - Filament width w = 4 mm
 - Flow rate $F = 13 \text{ mm}^3/\text{s}$

t = 50 min

- First free standing structure
- Pumping many air bubbles
- Printed 4 layers before collapse of first layer

Discontinuities resulting from poor pumping performance caused layer instability

Pumping difficulties:air bubbles present in piping

t = 60 min

- Pumping many air bubbles
- Printed 6 layers before collapse of first layer
- Difficulty with start stop indicated by discontinuous purge layer

Collapse initiated at far end of structure – likely due do a void and instability due to nozzle movement

t = 65 min

- Pumping many air bubbles
- Printed 9.5 layers before collapse of first layer
- Difficulty with start stop indicated by discontinuous purge layer
- Collapse started at far end of structure

t = 70 min

- Pumping many air bubbles
- Printed 7 layers before collapse of first layer
- Improved start stop performance
- Difficulty with "turns" moving left to right, then right to left.
- Jamming in piping not able to printer after this point

Mass of material over small area overcame yield stress and caused collapse

t = 30 min

- No pumping issues no air bubbles
- Printed 15 layers before collapse of first layer
- First layer collapse

t = 40 min

- Printed 20 layers before collapse of first layer
- Material on nozzle pull column over
 - Nozzle moving to left
 - Material is attached to nozzle
 - This creates a bending moment which exceeds yield stress at collapse point

- Bending moment induced collapse observed for prints 3 and 4
- Collapse may also occur above bottom layer at a defect

• Printed 20 layers

Printed 23 layers

٠

t = 53 min

- Similar collapse mechanisms occur for next two prints.
- Printing difficulties begin at 75 min with large voids forming in piping system

t = 75 min

- Print 9 layers before first void.
- Print 13 layers before first missing 14th layer

t = 80 min

• Pumping challenges caused several missed layers at beginning of print.

t = 12 m	nin
----------	-----

t = 53 min

t = 71 min

13 layers

24 layers

0 layers

Yield Stress

- Stiff materials difficult to test
 - Switch tool geometry to avoid slippage
- Yield Stress measurements made with a strain controlled rheometer
- Serrated 25 mm parallel plate
- Strain rate: $\dot{\gamma} = 1.0 \ 1/s$

- Assess change in materials yield stress with time
- Two different material responses
- Mix A: low initial yield stress then rapid increase
- Mix B: high initial yield stress but steady increase
- Mix C: similar yield stress evolution to Mix B

Analyzing Test

engineering laboratory

- Failure governed by first layer
- Yield stress as a function of time after mixing:

$$\tau_y(t) = \alpha e^{\beta t}$$

- Tresca Failure Criterion:
 - $\tau_y = \frac{1}{2}\sigma = \frac{1}{2}k\rho_p g_0 h$
- Estimated time to first layer (k = 1):

	Calc. t_1	Meas. t_1
Mix A	11 min	50 min
Mix B	0 min	30 min

- As sample ages, failure transitions from failure of first layer to a buckling-like failure.
- Bucking failures are governed by geometry and elastic modulus.
- Can occur at stress below yield stress

 Failure of structure changes and occurs before collapse of first layer

Structure Rebuilding

- Rate at which material recovers yield stress
- Measure structural rebuilding by with stress controlled rheometer
 - Shear at 100 1/s for 60 s.
 - Apply stress to material 10 % of measured yield stress – measure shear rate required to maintain stress level
 - Fit model to strain rate decay

- Mix B recovered yield stress faster than Mix A for all times tested
- Beyond 67 min material began to slip in rheometer.
 For Mix B printing is possible up to 83 min.
- Below $\theta = 0.125 \ s$, both Mix A and B are printable
- Mix C is printable from start

Scaling from Paste to Mortar: SPH Model

• Lagrangian Formulation of Generalized Navier-Stokes Equation

$$\rho \frac{\partial v}{\partial t} = \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_k} \left[\mu \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} - \frac{2}{3} \delta_{ik} \nabla \cdot v \right) \right] + \frac{\partial}{\partial x_i} (\zeta \nabla \cdot v)$$

• Lubrication Forces:

$$F_{LUB} \sim \frac{\mu(V_A - V_B)}{s_{AB}}$$

• Van der Waals Forces:

$$F_{INT} \sim \frac{H_{VAN}}{S_{AB}^2} + \frac{A_{HS}}{S_{AB}^8}$$

Velocity, Density Temperature Strain Rate

SPH interactions transfer momentum, density according to Gen. Navier Stokes equations

Rigid body represented by "freezing" a subset of particles and moving them according to the Euler equations.

Silica Spheres in 5 % Methylhydroxypropyl cellulose in water Experimental measurements Simulation results

SPH Model: Flow in a Pipe

- Preliminary Simulations: w/c = 0.48, 1 mm sand in Ø3 cm pipe
- Matrix fluid assumed power-law behavior of $n = \frac{1}{2}$
- $\Delta P = g$ across length of pipe in simulation
- Changing applied pressure, $V \sim g^{1/n}$
 - Flow rage scales proportional to g^2

- Locally high shear rates produce lubrication layer
 - Fully developed flow
 - $n = 0 \rightarrow \text{plug flow}; n = \frac{3}{2} \rightarrow \text{Shear thickening}$
- Shear induced particle migration: particles flow toward center of pipe, altering w/c. Occurs within 4 to 5 pipe diameters.

Lab to Commercialization

- Continue studies to understand relationship between material properties, machine settings, print quality, and print performance.
 - Control onset of initial set.
 - Material delivery.
- Codes and Standards
 - Measuring compressive strength, rheology, and other material properties.
 - Performance-based specification of materials!
- In-line and in-situ measurements of material properties NDT/NDE
 - Cold joint and flaw detection.
 - Strength build up.
- Machine design
 - Nozzle design influence on print quality.
- What about reinforcements?
 - Fibers orientation and effectiveness.
 - Parallel printing incorporate other AM techniques to create reinforcement.
- Consortium: Metrology of Additive Construction by Extrusion (MACE)
 - Partnership between government, industry, and academia

Metrology of Additive Construction by Extrusion

Objective will be achieved by identifying and then translating cementitious material measurements to in-line or in-process measurements for quality assurance and success of the Additive Construction by Extrusion process.

Part 1: Correlating off-line Measurements to Print Quality
Part 2: In-situ and In-process Measurements

Part 3: Hardened Prosperities and Scaling up to Concrete

Now accepting members!

Interested? Contact:

Scott Jones at <u>scott.jones@nist.gov</u>

NIST NRC Postdoctoral Research Associateships Program

Microstructural Modeling of Cement-based Materials

Adviser: Jeffrey W. Bullard (Jeffrey.bullard@nist.gov)

Rheological Measurements of Cementitious Materials

Adviser: Nick Martys (nicos.martys@nist.gov)

Thank You!

Scott Z. Jones¹, Dale P. Bentz¹, Nicos S. Martys¹, William L. George¹, and Austin Thomas^{1,2}

¹National Institute of Standards and Technology

²University of New Haven

scott.jones@nist.gov

Cement Paste Printer

 $_{\rm N}$ of $A_{\rm d}$

Relating Rheology to Printing

Evaluate material material performance:

- **Pumpability** The ease and reliability with which material is moved through the delivery system
- **Printability** The ease and reliability of depositing material through a deposition device
- **Buildability** The resistance of deposited wet material to deformation under load
- **Open Time** The period where the above properties are consistent within acceptable tolerances

References:

Lim et al. Automation in Construction (2012) 21:262–268 Le et al. Materials and Structures (2012) 45:1221–1232

Control material rheology:

- Limestone powder additions
 - Cement:Limestone 67:33, 80:20, 50:25:25 by mass
- Control hydration kinetics
 - Slow hydration sodium gluconate and sucrose: 1 2 μ L/g-powder
 - Accelerate hydration Aluminum sulfate: 0.03 g/g-paste (3 %)

Rheology Measurements:

- Yield stress and viscosity using parallel plate geometry
- Mini-slump measurements

Cement Paste Printer

- Retarder dosage of 1.33 $\mu\text{L/g}\xspace$ produced 5 h dormant period
- Initial spike due to mixing and, possibly, ettringite formation
- Beyond dormant period, hydration is controlled by water content and particle size of powder

Without remixing, hydration products continue to form, increasing yield stress

- Injection of accelerator causes initial increase in yield stress likely due to ettringite formation
- Remixing breaks down the structure causing a drop in yield stress
- However, without remixing, hydration product formation causes continuous increase in yield stress

Dielectric RheoSANS

- Rheology, conductivity, and Neutron scattering in parallel measurements
 - SAOS/LAOS
- Linking structure formation to rheology and conductivity measurements
- Study effect of hydration retarders and accelerators on structure formation

https://dx.doi.org/10.3791/55318