ASCE 41 versus TEASPA*:

Comparison of Seismic Evaluation Results of RC Frame Buildings Damaged during 2016 Meinong Earthquake, Taiwan

* Taiwan Earthquake Assessment for Structures by Pushover Analysis

Jiun-Wei Lai, Insung Kim , Garrett Hagen, Kirk Johnston, Daniel Zepeda, Shyh-Jiann Hwang

2016 Meinong Earthquake

Date and Time	2016/02/06 03:57:26(UTC+8)
Magnitude (M _L)	6.6
Deaths	117
Injuries	551
Buildings Damaged	Completely Collapse: more than 11 Red Tagged: 288 Yellow Tagged: 328

(sources: CWB; Central Emergency Operation Center; NCDR; Construction and Planning Agency, Ministry of the Interior, Taiwan)

 $1 gal = 1 cm / \sec^2 \approx 0.001 gravity$

Building Damage

District Office Buildings

Basic Building Information

District Office Name	Year of Construction /Modification Phase(s)	Building Dimension (Long. × Trans.)	Nominal Material Properties	Observed Structural Performance Level per ASCE 41	Status in 2018
Juo-Jhen	1974/ 1984/ 1998	108.3 ft × 57.4 ft	f _c ' = 3,000 psi	Between Life Safety (LS) and Collapse Prevention (CP)	Retrofitted
Shan-Shang*	1984	108.3 ft × 57.4 ft	(RC)	Between LS and CP	Demolished
Guei-Ren	1974/ 1988/ 2012**	131.2 ft × 57.4 ft	(Reinforcement)	Immediate Occupancy (IO)	In Use

*This building has a partial basement **Seismic upgrade

Typical Floor Plan and Column Details

Column Type	C1	C2, C3	C4, C5	C6, C7
Longitudinal Bars		*	* * * *	\square
3F	6-#7 + 2-#6	8-#7 + 2-#6	10-#6	8-#6
2F	6-#7 + 2-#6	8-#7 + 2-#6	4-#7 + 6-#6	
1F	4-#8 + 4-#7	4-#8 + 6-#7	4-#8 + 6-#6	
Tie Bars	#3 @4"~10"	#3 @6"	#3 @4"~10"	
Size	15.7 in × 23.6 in			15.7 in × 19.7 in

1st Floor Plan (Juo-Jhen District Office Building; source: NCREE)

Ground Motion Records and Seismic Demands

Response Spectrum (CHY089)

Analysis Summary (ASCE 41, LDP)

				LDP in Longitudinal Direction (X-dir.)					
District Office Building	Build Weight (kip)	Periods (second) (Modes 1, 2 and 3)	Spectral Accelerati on (g)	Base Shear (kip)	Roof Displacement (in.), (Roof Drift)	Max. Column Shear DCR (LS) (Unless Noted Otherwise)	Max. Column Shear DCR (CP)		
Juo-Jhen	3,752	0.58, 0.19, 0.19	1.06	3,717	4.31 (1.0%)	2.90	2.74		
Shan-Shang	3,100	0.53, 0.19, 0.18	0.93	2,701	3.32 (0.8%)	2.33	2.21		
Guei-Ren (retrofitted)	3,667	0.22, 0.21, 0.15	0.68	1,992	0.42 (0.1%)	0.67 (LS) 0.74 (IO)	-		

Analysis Summary (ASCE 41, NSP)

		NSP in Longitudinal Direction (X-dir.)						
District Office Building	Build Weight (kip) and Height (ft)	Effective Periods (second)	Spectral Accel.(g)	ASCE 41 Yield Displacement (in.) and Roof Drift Ratio (%)	Peak Base Shear (kip)	Target Displacement (in.) and Roof Drift Ratio (%) (1)	Displacement where First LS Column Hinge Occurred(in.) (2)	DCR (1)/(2)
Juo-Jhen	3,752 36.4	0.58	1.06	2.10 (0.5%)	2,464	4.39 (1.0%)	3.40	1.29 (LS)
Shan-Shang	3,100 36.4	0.54	0.93	1.87 (0.4%)	2,025	3.33 (0.8*)	3.13	1.05 (LS)
Guei-Ren (retrofitted)	3,667 36.4	0.23	0.68	N.A.*	N.A.*	0.36 (0.08)	1.89	0.19 (LS)

*The building model remains essentially elastic at target roof displacement

Juo-Jhen District Office Building

Column Evaluation Results vs Actual Damage Observed (Jho-Jhen District Office)

Shan-Shang District Office Building

Column Evaluation Results vs Actual Damage Observed (Shan-Shang District Office)

Observed Column Damage during Meinong Earthquake

Guei-Ren District Office Building (Retrofitted)

<u>ASCE 41-13 LDP</u> DCR = 0.67 (LS) DCR = 0.74 (IO)

<u>ASCE 41-13 NSP</u> DCR = 0.19 (LS)

Taiwan Earthquake Assessment for Structures by Pushover Analysis (TEASPA)

- ATC 40 based approach (capacity spectrum method)
- Performance point (for school buildings) is selected as one of the following points on the capacity curve:
 - Peak base shear
 - 2% roof drift
 - Failure of gravity load carrying components
- Focusing on global building performance

Spectral displacement

Shan-Shang District Office Building	X direction	
Base Shear (tonf)	462	
Roof Displacement (cm)	4.05	
Seismic Capacity A _p (g)	0.26	
Ground Motion Record A_{EQ} (g)	0.40	
Capacity-Demand Ratio (CDR)	0.66 (DCR= 1.52)	
Retrofit required		

Jho-Jhen

District Office Building	TEASPA DCR	ASCE 41 Life Safety NSP DCR
Juo-Jhen	1.54	1.29
Shan-Shang	1.52	1.05
Guei-Ren (retrofitted)	0.40	0.19

Guei-Ren (Retrofitted)

Main Findings

- 1) ASCE 41 LDP conservatively identified the over-stressed columns
- 2) ASCE 41 NSP captured the global performance relatively well for all three buildings
- 3) LDP generally predicted higher DCRs compared to NSP
- 4) Both ASCE 41 and TEASPA provided reasonable estimations of building performance
- 5) Significant differences in the calculated strength and deformation capacity from ASCE 41 NSP and TEASPA

Questions?

