

Effect of High Strain Rates of Reinforced Concrete Bond

Eric Jacques, Ph.D., P.Eng. ACI Las Vegas ejacques@vt.edu October 14, 2018

What does a high strain rate bond failure look like?

VIRGINIA State-of-the-Practice

- Development Length Design
 - Stringent detailing requirements
 - Ignore rate effects on bond "capacity"

$$l_{dd} = \left(\frac{3}{40} \frac{SIF \times DIF \times f_y}{\lambda \sqrt{f_c'}} \frac{\psi_t \psi_e \psi_s}{\left(\frac{c_b + K_{tr}}{d_b}\right)}\right) d_b \ge 300 \ mm$$

The Challenge:

Does not address detailed design, assessment of existing, or contribute to state-of-the-art

ASCE

State-of-the-Art

Weathersby (2003)

Solomos & Berra (2010)

Panteki et al. (2017)

- Bond strength is improved under high strain-rate loading
 - *DIF* between 1.1 to 4.0 (!), $\dot{\varepsilon} \approx 0.1 10 \ s^{-1}$
 - Concrete quality, cover depth, confinement

Small-scale, pullout tests generate an unrealistic internal stress state.

Objective

- 1. Establish the high strain rate bond characteristics of realistically proportioned structures
- 2. Understand influence of key parameters
- 3. Incorporate bond *DIF* into the design process

Scope

Experimental shock tube tests of lap spliced beams

University of Ottawa Shock Tube

(a) Shock tube driver and expansion sections

(b) Shock Tube Test Frame

Experimental Program

- Large-scale lap spliced beams under high strain rate loading
- Effect of:
 - Concrete strength ?
 - Bar size ?
 - Cover depth ?
 - Transverse reinforcement ?

Test Specimens - Reinforcement

Splices designed to fail at 400 MPa static stress

Equal cover depths

Test Specimens – Companion Pairs

Twenty-five beams, twelve companion pairs

Concrete Properties

Compression *f*[']_c
 30, 50 MPa

Structural Properties

- Bar size
 - 10M, 15M, 20M
- Concrete cover
 25, 38, 50 mm
- Presence of confinement

Loading

• Strain-rate $-\dot{\epsilon} \approx 10^{-6} s^{-1}$ $-\dot{\epsilon} \approx 1 s^{-1}$

Test Procedure & Instrumentation

Spreader beam

Lap-spliced beam

Simple support with load cell

Test Procedure & Instrumentation

CP9-HSR

Unconfined splice

Confined splice

Dynamic Bond Strength

• Maximum bond strength *u* developed at splice failure

Dynamic Bond Force

• Normalize **total bond force** $T_b = f_s A_b$ w.r.t to $f_c'^{0.25}$ to investigate influence of structural configuration

Influence of Structural Configuration for Unconfined Splices

Practical Significance

$$DIF_{sc} = -1.20 \times 10^{-5} l_d (c_{min} + 0.5d_b) + 1.04 \times 10^{-3} A_b + 1.18 \ge 1.00$$
(1)
(2)
(3)

$$\mathbb{D} \uparrow l_d(c_{min} + 0.5d), \downarrow DIF_{sc}$$

- Bond forces are not uniform
- Bond failures are localized & incremental

 \bigcirc Lower limit *DIF_{sc}* indicates no strain rate decrease

VIRGINIA TECH. Protective Design

1. Minimum dynamic development length l_{dd} shall be calculated by:

$$l_{dd} = \frac{1}{DIF_{l_d}} \left(\frac{3}{40} \frac{S_{f_y}}{\lambda \sqrt{S_{f_c'}}} \frac{\psi_t \psi_e \psi_s}{\left(\frac{c_b + K_{tr}}{d_b}\right)} \right) d_b \ge 300 \ mm$$

where:

$$\begin{split} S_{f_y} &= ASF \times DIF \text{ for steel} \\ S_{f'_c} &= ASF \times DIF \text{ for concrete} \\ DIF_{l_d} &= -1.10 \times 10^{-5} l_d d_{cs} + 8.50 \times 10^{-4} A_b + 1.11 \geq 1.00 \end{split}$$

- 2. Valid for far-range blast effects $Z > 1.2 \ m/kg^{1/3}$
- 3. Check development for all other load combinations
- 4. Satisfy all detailing requirements specified in ASCE/SEI 59-11

Reduction in dynamic development length of $\approx 15\%$ compared with current practice

Summary

- Established the high strain rate bond characteristics of realistically proportioned reinforced concrete structures
- 2. Understand influence of key parameters
- **3**. Incorporate bond *DIF* into the design process

Thank you!

Eric Jacques, Ph.D., P.Eng.

Assistant Professor Virginia Polytechnic Institute and State University Blacksburg, VA 24061 <u>ejacques@vt.edu</u> (540) 231-2903

References

- Solomos, G., and Berra, M. (2010). Rebar Pullout Testing Under Dynamic Hopkinson Bar Induced Impulsive Loading. Materials and Structures, 43(1-2), pp. 247-260.
- Weathersby, J.H. (2003). Investigation of Bond Slip Between Concrete and Steel Reinforcement Under Dynamic Loading Conditions. Ph.D. Thesis, Department of Civil and Environmental Engineering, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, 280 pages.
- Panteki, E., Máca, P., and Häussler-Comb, U. (2017). Finite element analysis of dynamic concrete-to-rebar bond experiments in the push-in configuration, International Journal of Impact Engineering, 106, pp. 155-170.
- Jacques, E., (2016) "Bond Characteristics of Reinforced Concrete at High Strain-Rates," Ph.D. Thesis, Dept. of Civil Engineering, University of Ottawa, Ottawa, Canada.
- ASCE (2011) Blast Protection of Buildings, ASCE/SEI 59-11. American Society of Civil Engineers, Reston, Virginia.
- ACI. (2003). ACI Committee 408: Bond and Development of Straight Reinforcing Bars in Tension. American Concrete Institute, Farmington Hills, Michigan.
- ACI. (2014). ACI Committee 318: Building Code Requirements for Structural Concrete. American Concrete Institute, Farmington Hills, Michigan.