Unified Performance-Based Blast-Resistant Design Methodology for Precast Concrete Insulated Wall Panels

Matthew J. Gombeda Clay J. Naito Spencer E. Quiel

ATLSS Engineering Center Lehigh University Bethlehem, Pennsylvania

E LEHIGH

ACI Fall 2018 Convention Sunday October 14, 2018 Las Vegas, Nevada

1

Presentation **overview**

+ Background on approach for solid wall panels

+ Background on IWP analysis method

+ Overview of proposed unified methodology
 → Synthesis of the two previous approaches

+ Comparison of results using proposed methodology with conventional blast design approach

+ Ongoing/upcoming work

Background

Performance-Based Blast Design Methodology for Solid Wall Panels

Current **antiterrorism** standards: (PDC TR-06-08)

Member			B1		B2		B3		B4		
			θ	μ	θ	μ	θ	μ	θ		
Flexure	No shear reinforcing/ without tension membrane		-	-	2°	-	5°	-	10°		
	With compression face steel reinforcement and shear reinforcing/without tension membrane ²	1	-	-	4°	-	6°	-	10°		
	With tension membrane $(L/h>=5)^{3, 4}$		-	-	6°	-	12°	-	20°		
Combined	No shear reinforcing/ without tension membrane		-	-	2°	-	2°		2°		
Flexure & Compression ⁵	With compression face steel reinforcement and shear reinforcing/without tension membrane ²	1	-	-	4°	-	4° -	4°			
Compression ^{5, 6}	Walls & Seismic Columns		-	1	I	2	-	3	-		
	Non-Seismic Columns	0.7		0.8	-	0.9	-	1	-		
Tension or Combined Flexure & Tension			No response limits in this report, see SBEDS Methodology Manual								

Table 4-1 Response Limits for Reinforced Concrete

PDC-TR 06-08 Rev 1. Single Degree of Freedom Structural Response Limits for Antiterrorism Design

<u>The Issue</u>: Lack of **direct correlation** between material limit states and the response limits or damage states

+ Two reinforced concrete
panels with different
reinforcement ratios will reach
yield and nominal strength at
different deformation levels.

+ However, both panel designs would currently fall within the same set of response criteria in most of the current blast resistant design specifications.

Proposed Solution: Backbone response curve (generalized resistance function)

Updated damage descriptions & limit states were influenced by current antiterrorism standards and ASCE 41.

Deformation-dependent load-mass transformation factors (KLM)

A **computational modeling framework** was used to calculate the response of the panel.

General model architecture

Example material properties

Resistance functions vs. experimental semi-static test data

Comparison of results with experimental blast test data (and SDOF)

Specimen ID	R (m)	Eq. Mass TNT (kg)	Z (m/kg^1/3)	P _r (kPa)	I _r (kPa-ms)	$\Delta_{\rm M}$ (mm)	Visual Damage	$\Delta_{\rm F}$ (mm)	% Error Framework	Framework Damage	$\Delta_{ m SDOF}$ (mm)	% Error SDOF	SDOF Damage
P0-1 [1]	N/A	N/A	N/A	23.4	506.8	45.7	Superficial	38.7	-15.32	Superficial	38.9	-14.88	Superficial
P4-1 [2]	8.8	53.0	5.66	450	830	45	Moderate	46.9	4.22	Moderate	70.3	56.22	Heavy
P4-2 [2]	5.4	55.0	3.43	1930	1544	116	Heavy	123.7	6.64	Heavy	238.1	105.26	Blowout
P5-1 [2]	3.0	48.1	0.82	8620	2623	98	Heavy	90.8	-7.35	Heavy	392.7	300.71	Blowout
P5-2 [2]	3.0	48.1	0.82	8620	2623	92	Heavy	90.8	-1.30	Heavy	392.7	326.85	Blowout
P5-3 [2]	3.0	48.1	0.82	8620	2623	96	Heavy	90.8	-5.42	Heavy	392.7	309.06	Blowout
P5-4 [2]	5.4	52.8	3.48	1865	1496	53	Moderate	44.0	-16.98	Moderate	130.7	146.60	Hazardous
P5-5 [2]	4.0	48.0	1.10	3802	1798	55	Moderate	55.0	0.00	Moderate	183.3	233.27	Hazardous
P5-6 [2]	3.0	48.2	0.82	8620	2625	79	Heavy	90.9	15.06	Heavy	392.7	397.09	Blowout
P5-7 [2]	3.0	48.3	0.82	8620	2627	77	Heavy	91.1	18.31	Heavy	394.2	411.95	Blowout
P5-8 [2]	3.0	48.1	0.82	8620	2623	78	Heavy	90.8	16.41	Heavy	392.7	403.46	Blowout
P5-9 [2]	3.0	48.2	0.82	8620	2625	95	Heavy	90.9	-4.32	Heavy	392.7	313.37	Blowout
P6-1 [3]	48.8	394.6	6.65	55.2	439.9	54.4	Superficial	49.2	-9.56	Superficial	144.0	164.71	Moderate

[1] Mander TJ, Bingham BL, Lowak MJ, Polcyn MA. Development of a Simplified Blast Design Procedure and Response Limits for Load-Bearing Precast Wall Panels Subject to Blast Loads. Precast/Prestressed Concrete Institute (PCI); 2016.

[2] Forsen R. Airblast Loading of Wall Panels FOA Report C 20586-06. Stockholm, Sweden: National Defense Research Institute; 1985.

[3] Cramsey N, Naito C. Analytical assessment of blast resistance of precast , prestressed concrete components. PCI J 2007:67–84.

Background

Partially-Composite Analysis of Insulated Wall Panels (IWP)

Precast concrete **insulated wall panels** (**IWP**) have grown in popularity due to **enhanced thermal properties**.

+ A large variety of shear ties are available+ This causes variations of component response

Gombeda, Naito & Quiel – ACI Fall 2018

The Synthesis Performance-Based Blast Limit States & Partially-Composite IWP Analysis

IWPs with **different shear tie properties/layouts** may achieve **similar peak** capacities at different deflections

Unified methodology **flowchart**

21

Gombeda, Naito & Quiel - ACI Fall 2018

22

Comparisons of **SDOF analyses** using conventional UFC approach (fully-composite) and performance-based approach (partially-composite)

Peak Displacements (Δ) & Component Damage Levels (CDL)

		10	-89		20-170					
Panel ID	∆ _{PB} (in)	CDL _{PB}	∆ _{UFC} (in)	CDL _{UFC}	∆ _{PB} (in)	CDL _{PB}	∆ _{UFC} (in)	CDL _{UFC}		
IWP 2	1.54	SFC	0.84	MOD	4.30	BLO	3.56	HVY		
IWP 4	1.41	SFC	0.55	MOD	3.40	MOD	2.36	HVY		
IWP 5	1.14	SFC	0.49	MOD	2.58	HVY	2.10	HVY		
IWP 6	0.69	MOD	0.49	MOD	2.35	BLO	2.10	HVY		

LEGEND

SFC = Superficial MOD = Moderate HVY = Heavy HZD = Hazardous BLO = Blowout

Future work

+ Develop dynamic increase factors (DIFs) for shear ties and insulation types (in progress)

+ Experimental blast testing to verify new proposed DIFs

+ Extension of unified methodology to include other variations of insulated wall panels (e.g., multi-span, openings, etc...)

Summary & conclusions

+ Unified blast-resistant design methodology for insulated wall panels was proposed

+ Unified approach is a <u>synthesis</u> of two analysis frameworks:
 → Performance-based blast design of concrete panels
 → Partially-composite analysis of insulated wall panels

+ Critical response limit states vary depending upon panel geometry and constitutive properties

+ SDOF analysis results show conventional approach often underestimates peak displacements relative to PB methodology

Thank You!

Questions?