

American Concrete Institute

Use of Heavy Equipment on Existing Bridges During Construction

Kyle Eyre, P.E., P.Eng, *Kiewit Engineering Group Inc.*

Agenda

- About Kiewit
- Risk Mitigation
- Design Criteria
- Loading
- Methods
- Design Best Practices

ABOUT KIEWIT

The Kiewit Difference
 People
 Integrity
 Excellence
 Stewardship

American Concrete Institute

We Have Risk and we must take risk mitigation measures to keep the public and workers safe

"It is the Company's policy to properly and systematically address the design and construction of temporary structures and other construction devices used in our operations. When the design is not provided by the owner, the liability assumed by the Company requires even greater attention to minimize the risk of failure. The design and construction of temporary structures and other construction devices requires thoughtful risk analysis and risk mitigation measures that begin with appropriate selection of designers, an independent review of the resultant design, and proper inspection during construction.

Districts are to follow the Design and Construction of Temporary Structures and Construction Devices Manual."

• TSCD

Temporary Structures and Construction Devices – elements that are designed, developed, and constructed for the sole purpose of aiding in the construction of permanent works.

- CONSEPTUALIZE
- DESIGN
- DESIGN REVIEW INSPECT and VERIFY

Kiewit

TEMPORARY STRUCTURES

AND

CONSTRUCTION DEVICES MANUAL

IN WIT CORPORATION

KIEWIT CORPORATION

TEMPORARY STRUCTURES AND CONSTRUCTION DEVICES MANUAL | REV 10.0

TABLE 3.18: PERMANENT STRUCTURES – TEMPORARY CONDITION DURING CONSTRUCTION / ERECTION				
Risk Level	Attributes	Designer	Design Reviewer	Inspector(s)
Low (See Note 1)	 ✓ Stresses and loading during construction of permanent works may impact structure differently from final loading conditions. ✓ Overhang brackets on deck pours need to have anchorages and overturning forces on girders reviewed. 	Project Personnel to confirm with client that temporary conditions will not adversely affect structure Documentation required	Not required	No review of design process required in field. Erection checking covered elsewhere.
Moderate	 Structures where stability of individual members during construction needs to be reviewed, but overall structure stability is not at risk. Handling of long pre-cast or steel plate girders. Stability and external bracing require Design and Design Review. Erection of structural steel buildings, frames before final bracing is installed. 	KIE District PE <u>OR</u> Consultant A	Not required KIE <u>OR</u> Consultant B	Experienced District Personnel to review construction designs for completeness and constructability
High	 Any structure that is unstable in a global manner until final erection is complete. Steel truss cantilever bridge erection Segmental pre-cast and CIP bridge structures Box girder bridges requiring cast in place deck for stability Long-span bridge girders or trusses Exposure to public in partially erected condition 	Erection procedures designed by KIE Erection procedures designed by Consultant A	Consultant KIE <u>OR</u> Consultant B	Experienced District Personnel to review construction designs for completeness and constructability

DESIGN CRITERIA

- ASCE 37-14
- ACI 318
- AASHTO LRFD Bridge Construction Spec.
- AASHTO Guide Design Spec. for Bridge Temp. Works
- Others: AREMA, Kiewit CEDC

DEAD LOADS
 Structure Self Wt.
 Wearing Surface
 Barriers
 Utilities

AASHTO 3.4.2.1: DC = 1.25 Evaluation of Strength III for max. force effect during construction

LIVE LOADS Equipment Self Wt. Dynamic Impact

AASHTO 3.4.2.1: LL = 1.50, IM = 1.33 Evaluation of Strength III for max. force effect during construction

EQUIPMENT -Excavators on Superstructure (If necessary) -Haul Trucks -Ground Based Excavator

-Ground Based Excavators -Ground Based Cranes

EQUIPMENT

- Excavators ~ 40 to 100+ kip (Larger yields more economical operation)
- Compare to AASHTO Truck 72 kip (Greater need for engineering)
- Consider both uniform track and concentrated point loading

DECK REMOVAL

- CORE HOLES (INITIAL)
- DECK SLOTTING (LEAVE ENOUGH FOR GIRDER STABILITY)
- HYDRAULIC HAMMER ATTACHMENTS
- DIAMOND BLADE SAWS (LIMITED)
- DIAMOND WIRE SAWS (PREFERRED)

American Concrete Institute

American Concrete Institute

American Concrete Institute

STAGE SEQUENCES

- EVALUATE EVERY STEP
- REDUCED WIND EXPOSURE
- EXAMPLE SHOWING A TYPICAL STAGE DEMO

American Concrete Institute

Stage 1 – remove outer bike lane rail – Saw cut in ~10' pieces – pick with Excavator through existing railing holes and load directly into truck

Stage 2 – remove outer bike lane deck – Saw cut into ~10' long pieces – pick with excavator and load directly into truck

Stage 3 – remove inner Barrier Rail – Hoe ram excavator demo

American Concrete Institute

Stage 4 – remove Inner bike lane deck – saw cut into ~10 long pieces and pick with excavator and slab grab – load directly into truck

Stage 5–Use excavator W/Shear to remove existing Girders and Stringers. Girders picked Full length (~42') with crane from Trestle

Stage 6 – Wire Saw Existing Bent and top of concrete piles pick with Crane from Trestle

American Concrete Institute

Stage 7 – Shear Existing Piles (16" Conc.) with 345 excavator sitting on existing bridge. Piles picked with Crane from Work Trestle

American Concrete Institute

American Concrete Institute

ADD SUPPLEMENTAL SUPPORT WHEN NECESSARY

American Concrete Institute

- EVALUATING EA STAGE EFFECIENTLY
 - HAND CALCS
 - RISA 3D
 - MIDAS CIVIL

American Concrete Institute

CONSIDER RISKS

- HIGH RISK SAFETY
- HIGH RISK COST
- ADJACENT STRUCTURES
- PLAN THE WORK, WORK THE PLAN

DESIGN TIPS

- CONSERVATIVE LOAD FACTORS
- CONSIDER SERVICEABILIITY (IF APPLICABLE)
- TYPICAL EXCAVATOR 80 KIP

American Concrete Institute

DESIGN TIPS

- CRANE MATS (IF NECESSARY)
- LOAD DISTRIBUTION FRAMES (BYPASS DECK)
- PROVIDE TEMP. FALSEWORK SHORING (IF NECESSARY)

QUESTIONS?

American Concrete Institute

(aci

Thank you

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

American Concrete Institute

