

Designing Concrete Overlays

ACI Virtual Concrete Convention

Julie M. Vandenbossche, Ph. D., P. E.

William Kepler Whiteford Professor University of Pittsburgh -April 1, 2021-

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Dr. Shiraz Tyabji

Field Observations

Dr. Shiraz Tyabji

Leadership and Service

International Info. Exchange

University of Pittsburgh Department of Civil and Environmental Engineering

Whitetopping

https://intrans.iastate.edu/app/uploads/2018/0 9/overlay construction doc dev guide w cvr. pdf

First Whitetopping South 7th street in Terre Haute, Indiana -1918 Existing flexible pavement was overlaid with 3 - 4 in. of reinforced concrete During 40's and 50's -Used to upgrade military & civil airports **Highway** use Started approx. 1960 Types have included JPCP, JRCP, CRCP, FRC -Jim Mack

Whitetopping

https://intrans.iastate.edu/app/uploads/2018/0 9/overlay construction doc dev guide w cvr. pdf

First Whitetopping South 7th street in Terre Haute, Indiana -1918 Existing flexible pavement was overlaid with 3 - 4 in. of reinforced concrete During 40's and 50's -Used to upgrade military & civil airports Highway use

Started approx. 1960

Types have included JPCP, JRCP, CRCP, FRC

-Jim Mack

Design as a JPCP on HMA base.

Ultra-thin whitetopping (UTW)

Typ.2-4 in

UTW Calculator Mack et al

https://intrans.iastate.edu/app/uploads/2018/0 9/overlay construction doc dev guide w cvr. pdf

Thin whitetopping (TWT) Typ. 4-6 in

Colorado Design Procedure

CTL (Wu Sheehan & Tyabji)

- Pavement instrumentation
- 3-D FE

Ultra-thin whitetopping (UTW)

Typ.2-4 in

- Additional failure modes
- Climatic considerations
- Expanded 3-D FE models
- Performance data

Thin whitetopping (TWT) Typ. 4-6 in

Extent of character for spate and cognet for for means and spate to find for means and spate to between the find for means and spate to between the spate to between the find for means and spate to between the spate to between the find for means and spate to between the spate to between the find for means and spate to between the spate to between the find for means and spate to between the spate to between the find for means and spate to between the spate to between the find for means and the means and spate to between the spate to between the find for means and the means and the means and the find for means and the means and the means and the means and the find for means and the means and the means and the means and the means and the find for means and the means and the means and the means and the means and the find for means and the means and t	
Adv Lad Europer The of the starbad chapters Concepts of the starbad chapters Each financial chapters Delated Cances Concepts of the starbad chapter of the starbad chapters Presed Starbad The starbad chapters of the starbad chapter of the starbad chapters Presed Starbad The starbad chapter of the starbad chapter of the starbad chapters Presed Starbad The starbad chapter of the starbad chapter of the starbad chapter of the starbad chapter of the starbad chapters Delates The starbad chapter of the starbad chapter of the starbad chapter of the starbad chapter of the starbad chapters	oks.
Composition The in the advectation of the source on the sour	
Partial Constructions Take in the induces of the UTW (induces on) Take in the induces of the UTW (induces on) Take in the induces of the UTW (induces on) Take induces of the UTW (induces on) Take in the induces of the UTW (induces on) Personal Strength Take in the induces of the UTW (induces on) Personal Strength Take in the induces of the UTW (induces on) Apphabil Constructions Take in the induces of the endore stability	
The store The in the the character of the UTW. (acts, runn) 1 The in the store of the UTW. (acts, for runn of the character of the UTW. 5 The in the store of the UTW. (bit, for runn of the character of the UTW. 5 The in the store of the UTW. Parsent Strength 700 The in the store of the character of the coarting of th	
Joint Spacing 35 This is the answard of space between the shall (slick for more std); Permut Strength 700 This is the assward for space between the shall (slick for more std); Permut Strength 700 This is the assward for more std); Aryshalt Concerts Japans This is the assward for more std); Declores This is the assward for more std);	
Flemmal Strength (psi, MPa) 700 This is the average flemmal strength of the or (clock for more uffo) Asphalt Concrete Inputs Thickness	lab joir
Asphalt Concrete Inputs Dickness This is the thickness of the resisting apphalt of	concre
Thickness This is the thickness of the existing asphalt of	
(inches, mm) [lokek for more info]	t concr
Other Inputs	

Ultra-Thin Whitetoppin

UTW Calculator Mack et al

Colorado Design Procedure CTL (Wu Sheehan & Tyabji)

- Pavement instrumentation
- 3-D FE
- Trans. cracking

*Pavement ME does not design against longitudinal cracks for full lane width slabs

Frequency and depth of joint activation ?

- Fiber
- Slab size
- PCC/asphalt thickness

PennDOT and NRRA

1. Flexural stiffness ratio (FSR)

Flexural stiffness =
$$D_i = \frac{E_i h_i^3}{12(1 - \mu_i^2)}$$

 $FSR = \frac{D_{PCC}}{D_{Asphalt}}$

or

2. Panel size

- < 4.5 ft
- 4.5 ft 8.5 ft
- Full lane width

DeSantis et al. 2016 (ICCP 2016)

<u>Criteria</u>

Midsize slabs (4.5 ft - 8.5 ft)

- FSR<u><</u> 0.4: PCC only
- FSR> 0.4: Partial depth with every 6th joint full-depth

Full lane width:

• Full-depth for every joint

University of Pittsburgh Department of Civil and Environmental Engineering

$$F_{i} = F_{i-1} + C_{7} * C_{8} * DE_{i} * [C_{5} * E]^{C_{6}}$$

$$\Delta Fault_{i} = (C_{3} + C_{4} * FR^{0.25}) * (F_{i-1} - Fault_{i-1}) * C_{8} * DE_{i}$$

$$Fault_{i} = Fault_{i-1} + \Delta Fault_{i}$$

 F_0 =initial maximum mean transverse joint faulting (in)

FR = base freezing index (% time that the top of the base is below freezing (<32°F))

 δ_{curl} = max mean monthly PCC upward slab deflection due to curling

E = erosion potential of interlayer: f(% binder content, % air voids, P_{200} for partial depth)

 P_{200} = Percent of interlayer aggregate passing No. 200 sieve

WETDAYS = Average number of annual wet days (> 0.1 in of rainfall)

 F_i =maximum mean transverse joint faulting for month i (in)

 F_{i-1} = maximum mean transverse joint faulting for month i-1 (in)

 DE_i = Differential energy density of accumulated during month i

 $\Delta Fault_i$ = incremental monthly change in mean transverse joint faulting during month i (in)

 $C_1 \dots C_8 =$ Calibration coefficients

 $Fault_{i-1}$ = mean joint faulting at the beginning of month i (0 if i = 1)

 $Fault_i$ = mean joint faulting at the end of month i (in)

т З

$$F_{i} = F_{i-1} + C_{7} * C_{8} * DE_{i} * [C_{5} * E]^{C_{6}}$$

$$\Delta Fault_{i} = (C_{3} + C_{4} * FR^{0.25}) * (F_{i-1} - Fault_{i-1}) * C_{8} * DE_{i}$$

$$Fault_{i} = Fault_{i-1} + \Delta Fault_{i}$$

 F_0 =initial maximum mean transverse joint faulting (in)

FR = base freezing index (% time that the top of the base is below freezing (<32°F))

 δ_{curl} = max mean monthly PCC upward slab deflection due to curling

E = erosion potential of interlayer: f(% binder content, % air voids, P_{200} for partial depth)

 P_{200} = Percent of interlayer aggregate passing No. 200 sieve

WETDAYS = Average number of annual wet days (> 0.1 in of rainfall)

 F_i =maximum mean transverse joint faulting for month i (in)

 F_{i-1} = maximum mean transverse joint faulting for month i-1 (in)

 DE_i = Differential energy density of accumulated during month i

 $\Delta Fault_i$ = incremental monthly change in mean transverse joint faulting during month i (in)

 $C_1 \dots C_8 =$ Calibration coefficients

4

 $Fault_{i-1}$ = mean joint faulting at the beginning of month i (0 if i = 1)

 $Fault_i$ = mean joint faulting at the end of month i (in)

Full depth joint activation:

Erodibility index

Assigned integer value based upon base type

1 - extremely erosion resistant

to

5 – very erodible

MEPDG Documentation Appendix JJ

Erodibility Class	Material Description and Testing			
1	 (a) Lean concrete with approximately 8 percent cement; or with long-term compressive strength > 2,500 psi (>2,000 psi at 28-days) and a granular subbase layer or a stabilized soil layer, or a geotextile fabric is placed between the treated base and subgrade, otherwise class 2. (b) Hot mixed asphalt concrete with 6 percent asphalt cement that passes appropriate stripping tests and aggregate tests and a granular subbase layer or a stabilized soil layer (otherwise class 2). (c) Permeable drainage layer (asphalt treated aggregate or cement treated aggregate and with an appropriate granular or geotextile separation layer placed between the treated permeable base and subgrade. 			
2	 (a) Cement treated granular material with 5 percent cement manufactured in plant, or long-term compressive strength 2,000 to 2,500 psi (1,500 to 2,000 psi at 28-days) and a granular subbase layer or a stabilized soil layer, or a geotextile fabric is placed between the treated base and subgrade; otherwise class 3. (b) Asphalt treated granular material with 4 percent asphalt cement that passes appropriate stripping test and a granular subbase layer or a treated soil layer or a geotextile fabric is placed between the treated base and subgrade; otherwise class 3. 			
3	 (a) Cement-treated granular material with 3.5 percent cement manufactured in plant, or with long-term compressive strength 1,000 to 2,000 psi (750 psi to 1,500 at 28-days). (b) Asphalt treated granular material with 3 percent asphalt cement that passes appropriate stripping test. 			
4	Unbound crushed granular material having dense gradation and high quality aggregates.			
5	Untreated soils (PCC slab placed on prepared/compacted subgrade)			

University of Pittsburgh Department of Civil and Environmental Engineering

5

Partial depth joint activation:

 $\alpha = \log(1 + a * P_{200} + b * \% AV - c * \% Binder)$

 $\alpha = \text{Erodibility index}$

 P_{200} = Percent passing No. 200 sieve in interlayer

%*AV* = Percent air voids in asphalt interlayer %*Binder* = Percent binder in asphalt interlayer

a, *b*, *c* = Calibration coefficients (8.7346, 1.6989, 1.8323)

$$E = \begin{cases} (a * \alpha^{2} - b * \alpha + c) & Undoweled Pavements \\ (d * \alpha^{2} - e * \alpha + f) & Doweled Pavements \\ \end{cases} \alpha > 1.16$$
$$E = \begin{cases} (h * \alpha) & Undoweled Pavements \\ (i * \alpha) & Doweled Pavements \\ \end{cases} \alpha < 1.16$$

 $a \dots i = Calibration coefficients$

Full depth joint activation:

	Values for different models			
	BC			
Coefficient	FULL	PCC ON	'avement ME	
CDOWEL	7*Diam.Dow.	0 7	-	
C1	1.20	1978	1.29	
C2	Com		1.1	
C3	10/152 23	J1725	0.001725	
C		0.0008	0.0008	
C5	 -04	0.05	250	
C6	4.215	2.4	0.4	
C7	0.90	3.562	1.2	
C8 ²	$1/(5x10^5)$	$1/(5x10^5)$	400	

¹Different Erosion model ²Previous model used C8 as dowel damage coefficient not used for calibration

Unbonded Concrete Overlays (UBOL)

Existing concrete pavement

- Moderately to significantly deteriorated pavements
 Few, if any, pre-overlay repairs required
- Stable and uniform support layer

Interlayer

• HMA or nonwoven geotextile fabric

Overlay

- Thicker than bonded concrete overlays typ. 6 to 8 in
- Durable surface
- Increased structural capacity

Existing concrete pavement

Unbonded Concrete Overlays (UBOL)

Existing concrete pavement

- Moderately to significantly deteriorated pavements
 Few, if any, pre-overlay repairs required
- Stable and uniform support layer

Interlayer

• HMA or nonwoven geotextile fabric

Overlay

- Thicker than bonded concrete overlays typ. 6 to 8 in
- Durable surface
- Increased structural capacity

Desirable interlayer characteristics

5 Steps to Success

- 1. Balance permeability and strength
- 2. Erosion resistant mix (resistant to stripping)
- 3. Ensure proper compaction is achieved for AC interlayers
- 4. Keep moisture out of joints (seal/fill)
- 5. Provide a drainage path for water to exit pavement

Accounted for in Pitt UBOL Design Procedure

Best Practices

- Construction
- Maintenance
- Design

Overlay design

TPF(5)-169 - Development of an Improved Design Procedure for Unbonded Concrete Overlays:

Primary Goal: Incorporate Effect of Interlayer on Performance

Do NOT consider effect of interlayer on performance

UBOL Design - Faulting

UBOL Design

Failure type:

Cracking

- Transverse fatigue cracking : Pavement-ME & Pitt UBOL ME
- Corner/longitudinal cracking due to transverse joint interlayer damage: Pitt UBOL ME

Faulting

Pitt UBOL ME

TPF-5(269) UBOL Design

Help: Show Hide Open a PDF file with the project report.						
Reliability analysis Climate	station					
Yes V MOB	ILE AL 🗸					
Design Life, years:	Cracking Reliability, %	Faulting Reliability, %:				
20	90	90				
Two-way AADTT Year 1:	Linear Yearly Growth, %	Number of Lanes				
1000	3	2	*			
Joint Spacing, ft	Dowel Diameter, in	Shoulder Type				
13.5	0	✓ Tied PCC	*			
PCC Flexural Strength, psi:	Existing PCC Thickness, in:	Existing PCC modulus, psi:	Interlayer Type			
631.0	10.0	4000000.0	Fabric 🗸			
Submit Settings http://uboldesign3.azurewebsites.net/						

Pitt UBOL – Interlayer type

Interlayer type

-Control - Dense Graded Asphalt - Fabric Interlayer

—Open Graded Asphalt

Pitt UBOL – Interlayer properties

Interlayer effective binder content

Pitt UBOL -Effect of Interlayer Type

Thank You A A

Any Questions?

Contact Info.

Julie Vandenbossche, P.E., Ph.D.:

jmv7@pitt.edu

https://engineering.pitt.edu/JulieVandenbossche https://uboldesign3.azurewebsites.net