Evolution of Durability for Concrete Pavements

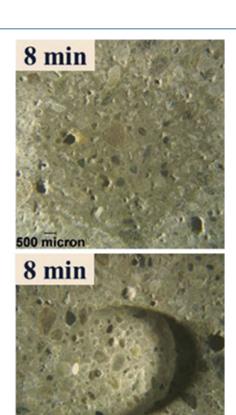
Dr Peter Taylor, PE (IL), FACI

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Introduction

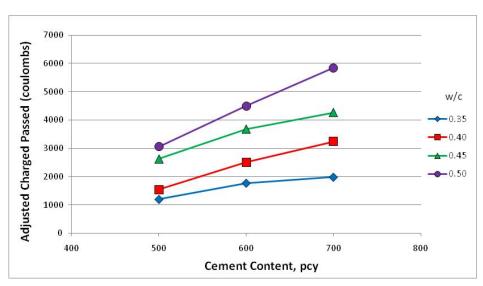
- Durability past
 - Add cement
 - Make it strong
 - Add air
 - Watch the slump

(All based on improving w/cm)


Introduction

- Durability recent
 - w/cm
 - SCMs
 - Better air void system
 - Sealants

Keep the water out!


SCMs and WRAs removed the links between

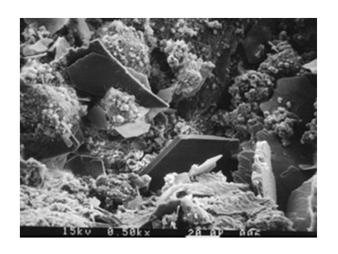
- Slump and w/cm
- Strength and permeability

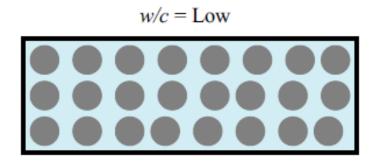
Introduction

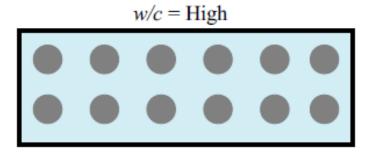
- Durability future
 - What is the exposure?
 - What are the mechanisms?
 - How do we control responses to those mechanisms?

Potential Durability

Ability of the concrete to survive the environment to which it is exposed:


- Fluid transport
- Cold weather
- Alkali aggregate reaction
- Sulfates




Potential Durability

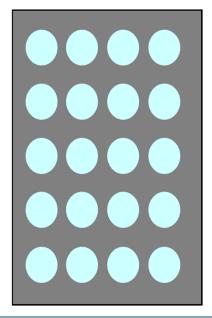
Controlled by:

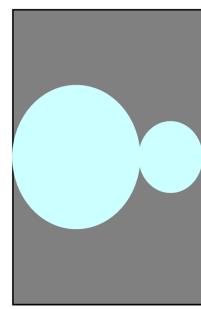
- w/cm
- System chemistry

The Things that Matter (PEM)

- Transport properties (everywhere)
- Aggregate stability (everywhere)
- Cold weather resistance (cold locations)
- Strength (everywhere)
- Shrinkage (dry locations)
- Workability (everywhere)

Measure at the Right Time


- Prequalification
 - Everything including calibration curves
- Process control
 - Check the activities that affect performance
- Acceptance
 - To pay or not to pay...



Fluid Transport

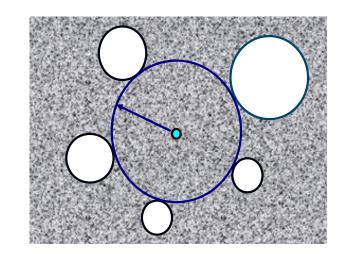
The ease with which fluids can penetrate concrete

- Significance
 - All durability damage is governed by permeability
- Factors
 - w/cm
 - SCM type and dose
 - Hydration
 - Cracking

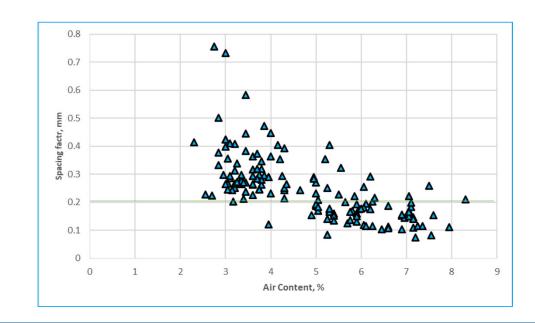
Transport

- Testing
 - RCPT (ASTM C1202)
 - Resistivity (AASHTO T 358, TP 119)
 - Store a cylinder in a fixed salt solution
 - Pull out at desired age
 - Read and put back
 - Repeat
 - F = <u>Resistivity (bulk)</u>
 Resistivity (solution)
- Acceptance

Cold Weather

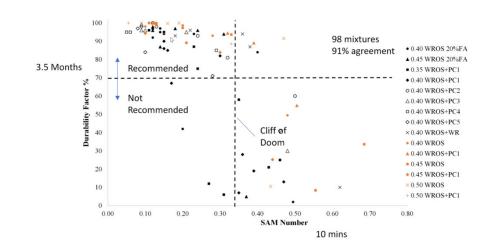

Two mechanisms:

- Saturated freeze thaw
- Oxychloride formation


Air-Void System

- Why?
 - Bubbles slow the rate of sauration
- What are we looking for?
 - Air void system is more important than total air content
 - Spacing factor: maximum distance of any point in a cement paste from periphery of an air void, < 0.008"
 - SAM > 0.2

Air-Void System


- Where?
 - At the batch plant
 - At delivery
 - At point of placement
- When?
 - Prequalification
 - In the field
 - At the central lab
- How?

Air-Void System

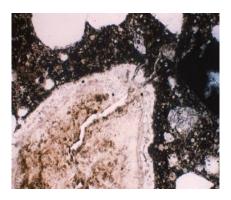
- Pressure Test, ASTM C 231 / AASHTO T 152
- Volumetric, ASTM C 173 / AASHTO T 196
- Gravimetric, ASTM C 138 / AASHTO T 121
- Super Air Meter AASHTO TP 118
- Microscopy ASTM C 457

Acceptance

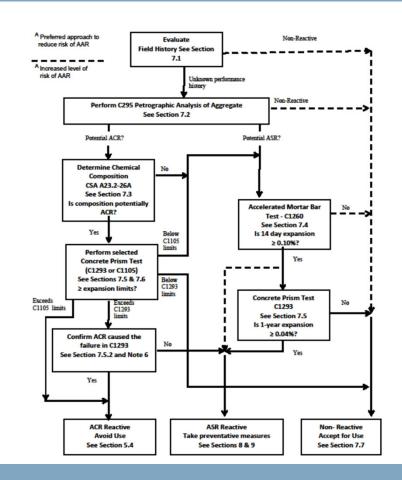
Salt attack

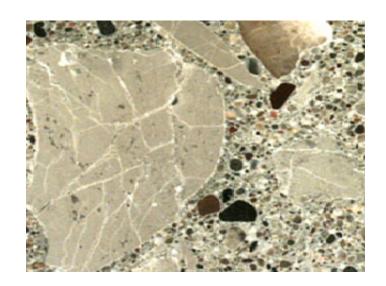
- Calcium oxychloride
 - Reaction between Ca(OH)₂ and calcium or mag chloride
 - Expands
 - Forms above 32F
- Prevention
 - Enough SCM

Tests for Oxychloride


- Low temperature differential scanning calorimetry (LT-DSC)
- Expansion
- Prequalification

Alkali-Silica Reaction


- Water + alkali hydroxide + reactive silicate aggregate → alkali silicates
- Alkali silicates + water → gel + expansion
- Silicates from aggregates
- Alkalis from cement (Na and K)


Alkali-Silica Reaction

- Prevention
 - Choose aggregates
 - Use SCMs (low-calcium fly ash)
 - Combinations of the above
- Testing / Specification
 - AASHTO R80 / ASTM C1778
- Prequalification

D-Cracking

- Certain calcareous aggregates absorb water
- Pore size prevents water leaving the system
- Freezing causes damage

Testing

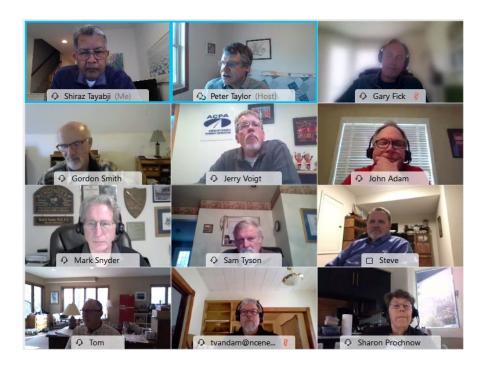
- Iowa Pore Index Procedure
- Freeze thaw test of standard mixture
- Indiana Hydraulic Fracture Test
- Ledge control
- Prequalification

Quality Control

- QC should include
 - Unit weight
 - Calorimetry
 - Maturity
 - Strength development
 - Air void stability
 - And a response...
- Risk management

But...

- Too many tests!
- That variability!!
- Too much change!!!


But...

- My mixtures will be changed!!!!
 - Most of the time our concrete is great!
 - IA, PA, MN experience is positive

		Workability	Transport	Strength	Cold weather	Shrinkage	Aggregate stability
Aggregate System	Type, gradation	√ ✓	-	-	-	-	√ √
Paste quality	Air, w/cm, SCM type and dose	✓	44	44	44	✓	✓
Paste quantity	Vp/Vv	✓	-	-	-	√ √	-

Shiraz

- Thanks for
 - Many hours of conversations
 - Hard questions
 - Opportunities
 - Encouragement and support

