

Concrete Pavement Design and Construction Special Session Honoring Dr. Shiraz Tayabji April 1, 2021

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Presentation Outline

- A Brief History of PCP in the U.S.
- Key Developments in PCP Technology
- Current State-of-Practice for Precast Pavement Design and Construction
- Future Directions for PCP

This presentation is dedicated to Dr. Shiraz Tayabji, whose efforts and innovations have helped to usher in the modern age of precast concrete pavement.

The Primary Motivation for PCP Technology

Photos: The Fort Miller Co., Inc.

Highways

• Some 1970s experimental use of precast concrete joint repair panels in Michigan and Virginia)

Airfields

- Numerous military airfield demo and trial applications in 1970s and 1980s
 - New York: 12 ft x 30 ft x 9 inches
 - California: 116 custom-sized panels replaced (and then overlaid with 8 inches asphalt)
 - Florida: 6ft x 6ft x 8-12 inches thick
 - Mississippi: used to predict repair times for bomb craters (up to 50 ft x 50 ft and 6-8 inches thick

Georgetown, Texas Frontage Road Demo (Ref. Merritt, McCullough and Burns, 2002)

- 2001 2002 PPCP Demo reconstruction on I-35 Frontage Road
- ~2300 centerline-ft of 8-inch, two-lane roadway and shoulders (36 ft wide)
- 200 325 ft effective panel lengths (post-tensioned 2 directions)

B. Frank McCullough

 Demonstrated advantages of precast pavement for rapid reconstruction and several specific construction techniques for PPCP.

Tappan Zee Bridge Toll Plaza, New York Metro Area

- Oct 2001 July 2002 reconstruction of Toll Plaza under traffic (off-peak)
- 1st major U.S. PCP construction project done under live traffic
- 1088 doweled and tied 10-inch thick JCP panels; 162,876 s.f.
- Production = 3,000 s.f. installed/8-hour shift, <u>+</u>1/8 inch elevation no grinding

Peter Smith Ernie Barenberg

• Demonstrated advantages of specific JPrCP features

Taxiway Panels at Dulles Int'l (Washington, DC), 2002

- T/W Bravo
 - Removed: 4 panels,
 25' x 25' x 14" thick
 - Placed: 8 precast slabs, 25' x 12.5' x 13" thick (25.3 tons each)
 - 4 panels in 2.2 hours,
 opened to traffic at
 6am
- T/W Yankee
 - Removed: 2 panels,
 25' x 25' x 14" thick
 - Placed: 4 precast slabs, 20' x 12.5' x 13" thick (20.25 tons each)

Source: The Fort Miller Co., Inc.

The PANY Precast Concrete System at LaGuardia Airport (2002)

Source: Buch and Tayabji (SHRP R05 Study)

Brief History of Precast Concrete Pavement in U.S. AASHTO TIG – Precast Concrete Paving Slabs (PCPS)

- Active 2005 2008
- Agencies (CA, IA, IN, NY, NYSTA, MN, MO, ONT, PANY/NJ, VA)

FHWA, Academia, Industry

- Products:
 - FAQ list

- Guide Specs for Design, Construction and System Approval
- Specification Clearinghouse

aii.transportation.org/Pages/PrecastConcretePavingSlabs.aspx

Lane Miles of Jointed Precast Slab Installations (June 2013) (All Systems, U.S. & Canada)

More than 113.5 lanemiles of JPrCP as of Sept 2018, including:

- CA 51.7 ln-mi
- NY 28.0 ln-mi
- IL 7.4 ln-mi
- NJ 7.1 ln-mi
- HI 3.6 lm-mi
- ONT 3.2 In-mi

Source: NPCA

Key Developments in Precast Pavement Technology

- Slab support and leveling
- Achieving desired surface geometry
- Load transfer system design
- Other (Honorable, but unmentionable today)
 - Prestressing for increased panel length or reduced slab thickness
 - Panel designs and construction procedures for repair of CRCP

Methods of Achieving Slab Support

Uniform support is key to precast concrete pavement performance. (The same is true for conventional concrete pavements!)

Grade-supported

Urethane or Grout Injection

Grade-Supported Systems:

Placing, Compacting & Grading Bedding Material

Placement of Bedding Material

First Grading Pass

Wetting & Compacting

Final Grading Pass

Images: The Fort Miller Company, Inc.

Methods of Achieving Slab Support

Uniform support is key to precast concrete pavement performance. (The same is true for conventional concrete pavements!)

Leveling Jacks with Grout

Images: Dr. Shiraz Tayabji, Advanced Concrete Pavement Consultancy, LLC, Gracie Leveling Lift, and The Fort Miller Company, Inc.

Matching Pavement Surface Geometry

Slab shape must match geometry of surrounding pavement surface

Source: The Fort Miller Co., Inc.

Nonplanar Surfaces More Common Than You Might Think!

- Often imperceptible by eye
- Perform 3-D survey to be sure

Source: The Fort Miller Co., Inc.

Creating Nonplanar Pavement Surfaces Option 1: Grind Flat Slabs to Profile

Pros:

Flat slabs are easily fabricated and less costly

Cons:

- Added cost of grinding
- May require added slab thickness
- Voids between single-plane panel and nonplanar foundation
 - Extra extra bedding grout required
 - May prevent opening to traffic without grouting.

Creating Nonplanar Pavement Surfaces Option 2: Fabricate Nonplanar Panels

Pros:

- Minimize need for diamond grinding (less cost)
- No significant thickness reduction or need for added thickness
- Less bedding grout
- Allows opening to traffic without grout

Cons:

- Need 3D data for design, fabrication
- Needs more engineering, special forming equipment, more fabrication labor
- Can complicate prestressing

Image: The Fort Miller Co., Inc.

Load Transfer System Options Super-Slab[®] Bottom Slot System

- Dowels engage slots in adjacent slab
- Pump dowel group into ports
 - Grout reaches 2500 psi in about 2 hours
- Fill slots and joint between slabs
- Dove-tail slot resists bar pop out
- "Clean" pavement surface

Dove tail-shaped slot

Load Transfer System Options Top-Slot Systems – Early DBR-style, Teardrop, and SHRP2 Narrow-mouth

Images: Tayabji and Buch SHRP2 R05 Study, Mehdi Parvini (Caltrans), Dr. Shiraz Tayabji

Load Transfer System Options Center-Slot Systems – Barra-Glide™

Current State-of-Practice SHRP2 Project R05 (2008 – 2012) Precast Concrete Pavement Technology

- > Overall findings.
- Findings based on field testing.
- Guidelines for PCP design.
- Guidelines for PCP fabrication.
- Guidelines for PCP installation.
- Guidelines for PCP project selection.
- Guidelines for PCP system acceptance.
- Model specifications.
- Implementation plan.

<u>http://onlinepubs.trb.org/onlinepubs/shrp2/SHRP2_S2-R05-RR-1.pdf</u> <u>http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Pages/R05-</u> <u>Model-Specifications-718.aspx</u>

Current State-of-Practice NPCA Manual for Jointed Precast Concrete Pavement (2018)

- Criteria for using PCP systems.
- Design of Jointed Precast Pavement Systems.
- Developing plans, specs and cost estimates.
- Preparing shop drawings.
- Panel fabrication.
- Pre-installation procedures.
- > System-specific installation procedures.
- Project management.
- > Maintenance requirements.

https://www.precast.org/jprcp-manual/

Future Directions for Precast Concrete Pavement Systems Re-usable Urban Pavement (RUP) Systems

Source: Peter Smith – Fort Miller Company, Inc.

- One example: "Super-Paver"™
- Designed for utility-intensive urban areas
 - Vertically removable & replaceable
 - Warped as required to fit any surface
 - Removable and reusable
 - Relatively lightweight
 - 6' x 6' weighs 2 T
- Major installations in NYC (2015) and Richmond, IN (2019)

Future Directions for Precast Concrete Pavement Systems Inlays of Asphalt-Surfaced Pavement

- Experiment/Demonstration project (2016)
- Kings Highway 401, near Barrie, Ontario (Toronto area)
- 400,000 vpd (35,000 truck/day)
- Deep rutting of existing asphalt, 3-4 year service life between rehab
- 12' x 15' x 8" panels asphalt support, grade support, grout support
- Precision micro-milling
- Instrumented and FWD test monitoring
- Early performance is good

Future Directions for Precast Concrete Pavement Systems Heatable Conductive Precast Panels

Carbon-fiber infused concrete between electrodes

Source: Abdualla et al, Iowa State University

Future Directions for Precast Concrete Pavement Systems Electrified Roadways – Inductive Power Transfer

Key advantages of electrified roadways:

- No limitation of driving range
- Reduction of battery capacity

Suitable locations for precast IPT installations:

bus stops and terminals, intersections, taxi stands, etc.

Source: Bernhard Lechner, Nen Nguyen Dinh – TUM (Germany)

Future Directions for Precast Concrete Pavement Systems Solar Power-generating Pavement Panels

Source: Laboratoire Central des Ponts et Chaussées

SolaRoad (Kromminie, Netherlands):

- Full-scale bike path (230 ft x 11.5 ft)
- Precast structural platform
 - Houses electrical connections
 - Supports power-gen cells
 - Embedded double-key LT system
- Produces enough power for single-person household

SUMMARY AND WRAP-UP

Thank you!

