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Introduction

• Not just content, but how is it delivered?

• Address different learning styles

• Instructors often have little pedagogical training

• Instructors tend to emulate their experiences

• This presentation is focused on an introductory Concrete Design 

course



Technical Content

• Shear behavior based on combined flexural, 

axial, and shear stresses

• Rapid and brittle failure

• 𝜑 = 0.75 (ACI 318-19 21.2.1)

• Diagonal tension failure

• Cracks at 45°for non-prestressed

• Overall philosopy

• Estimate cracking

• Cross cracks with stirrups
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Technical Content

• Shear Design

• 𝜑𝑉𝑛 ≥ 𝑉𝑢
• 𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 (ACI 22.5.1.1)

• Ultimate Shear Force (Vu)

• Based on the shear diagram, changes along length

• Based on force at d from the support for typical supports



Technical Content

• Concrete Contribution

• Changes in 318-19 

• Size effect factor

• Multiple equations (ACI 22.5.5.1)

For 𝐴𝑣 ≥ 𝐴𝑣,𝑚𝑖𝑛 either of
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Technical Content

• d = effective depth at section considered for shear

• bw = width of rectangular beam or T-beam web

• f’c = specified 28-day compressive strength in psi

• λ = modification factor to account for properties of lightweight concrete

• λ𝑠 =
2

1+
𝑑

10

≤ 1

• 𝜌𝑤 =
𝐴𝑠

𝑏𝑤𝑑



Technical Content

• Steel Contribution

• Stirrups typically installed vertically  

• 𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑡𝑑

𝑠
(ACI 22.5.10.5)

• Determining required stirrups

• 𝑉𝑢 ≤ 𝜑 𝑉𝑐 + 𝑉𝑠 = 𝜑2𝜆 𝑓𝑐
′𝑏𝑤𝑑 + 𝜑

𝐴𝑣𝑓𝑦𝑡𝑑

𝑠

• 𝑠(𝑥) ≤
𝜑𝐴𝑣𝑓𝑦𝑡𝑑

𝑉𝑢(𝑥)−𝜑𝑉𝑐

• Often stepwise approach

• Must consider minimum steel and maximum spacing



Active Learning Strategies

• Based on experience at four different universities
Shear Topic RHIT OU UMD Cornell

Shear Stresses in an Uncracked Elastic Beam MC, NA MC, NA LC, NA MC, A

Crack Initiation and Propagation (i.e. Mohr’s circle, crack patterns) MC, A HC, A MC, A MC, A

Concrete Contribution to Shear Strength, Vc HC, A HC, A HC, A HC, A

Steel Contribution to Shear Strength, Vs HC, A HC, A HC, A HC, A

Shear Analysis of Reinforced Concrete Beams HC, A HC, A HC, A HC, A

Shear Design of Reinforced Concrete Beams HC, A HC, A HC, A HC, A

Variable Spacing of Stirrups HC, A HC, A MC, NA HC, A

Min. Web Reinforcement and Max. Stirrup Spacing MC, A MC, A MC, A HC, A

Shear in Members with Axial Load LC, NA LC, NA LC, NA MC, A

Pattern Loading LC, NA MC, A MC, NA HC, A

Continuous Members LC, NA MC, A NC, NA HC, A

Two-Way Shear NC, NA NC, NA NC, NA HC, A

Other Shear Design Methods (Compression Field Theories, Shear Friction) NC, NA NC, NA NC, NA NC, NA

HC – High Coverage, MC – Moderate Coverage, LC – Light Coverage, NC – Not Covered, A – Assessed,

NA – Not Assessed. 



Active Learning Strategies

• Support instruction and content delivery

• Selected to match objectives and available time

• Engagement, reflection, and retention

• Promote a variety of learning styles

• Promote higher order thinking



Think-Pair-Share (engagement, retention, reflection)

• Preparation time: 5-10 minutes

• Activity time: < 5 minutes

• Examples

• Area of shear reinforcement for different stirrup configurations

• Strength reduction factor value

• Recommendations

• Make time for each portion

• Vary student groups



Muddiest Point (engagement, retention, reflection)

• Preparation time: < 5 minutes

• Activity time: < 5 minutes

• Help instructor know if students are struggling

• Examples

• “Please write down a question that you have about today’s topic.”

• “Please write down the concept from today that was the most unclear.”

• Recommendations

• Collect student responses and address at next class

• Use for difficult topics like variable spacing and maximum Vu



Variations (engagement, retention, reflection)

• Preparation time: < 5 minutes

• Activity time: < 5 minutes

• Examples

• “How would this problem change if the following given information were 

altered?”

• “How would changing from a uniform loading to single point load affect 

the maximum Vu?

• Recommendations

• Helps students think critically about problem approach

• Good for addressing common mistakes



Variations (engagement, retention, reflection)



Skeleton Notes (variety of learning styles)

• Preparation time: > 60 minutes per lesson the first time

• Activity time: 15 – 50 minutes

• Description

• Notes without key concepts or problem solutions distributed before class

• Faculty member fills in during class

• Helps students be organized and listen more 

• Recommendations

• Focus on providing items not critical for students to physically write

• Critical content should be left blank



Skeleton Notes (variety of learning styles)



Physical Artifacts/Demonstrations (variety of learning styles)

• Preparation time: 30 – 60 minutes

• Activity time: 15 – 30 minutes

• Description

• Provides a tangible connection to the material

• Multiple possibilities for shear behavior and design

• Recommendations

• Great way to introduce new concepts and topics

• Try to get students involved (may need multiple models)

• Poll students to see what they wish they had seen



Physical Artifacts/Demonstrations (variety of learning styles)

• Shear Reinforcement

• Foam prism and masking tape

• Can be qualitative or quantitative



Physical Artifacts/Demonstrations (variety of learning styles)

• Shear Reinforcement, Vs,max

• 2 x 6 with rubber hose

• Visualization of excessive strain in the reinforcement



Physical Artifacts/Demonstrations (variety of learning styles)

• Cracking behavior

• Photos or videos are easy to prepare

• Can provide a connection to active research



Physical Artifacts/Demonstrations (variety of learning styles)

• Punching Shear

• Foam padding or Styrofoam



Experiential Learning (variety of learning styles)

• Preparation time: widely variable

• Activity time: 20 minutes to several class meetings

• Description

• Students participate in construction and/or testing of physical specimens

• Laboratory sections often included with design courses

• Recommendations

• Laboratory activities require significant time, funds, and facilities

• Best to include in a class with a lab section

• Can scale to available time and facilities



Experiential Learning (variety of learning styles)

• Pattern loading

• Students form the “uniformly distributed load”

• Discuss effect of different loadings on shear forces



Experiential Learning (variety of learning styles)

• Lab Example 1

• Students build and test beams over two class periods

• Minimal stirrups to show brittle failure



Experiential Learning (variety of learning styles)

• Lab Example 2

• Students are assigned a failure type and must design for that failure

• Shear failure is typically spectacular and memorable

Lab Group Failure/Behavior Type Minimum Load ACI 318-19 Section

Team 1 Tension Controlled 12 kips 21.2.2

Team 2 Compression Controlled 12 kips 21.2.2

Team 3 Shear 12 kips 22.5

Team 4 Bond 12 kips 25.4.2

Team 5 Doubly Reinforced 20 kips

Team 6 T-Beam 20 kips 6.3.2



Simulation and Computations (higher order thinking)

• Preparation time: < 30 minutes to create the assignment

• Activity time: Approx. 2 weeks for student work and instruction

• Description

• Student built or instructor provided spreadsheet or “App” 

• Streamline the design process for consideration of alternatives

• Recommendations

• Be aware of student skills with the proposed software

• Can be used with other active learning strategies

• Students can be asked to identify limitations



Simulation and Computations (higher order thinking)

• Example spreadsheet for determining spacing with Vu(x)



Lessons Learned

• Hands-on hands-down – student comments indicate laboratory experience 

and physical models are particularly useful to students

• Application before theory – show the application first and use it to inform the 

theory, especially if time is limited

• Reinforcement detailing – students think no reinforcement is required within 

d from the support and general confusion about minimums and maximums

• Know your b – web width for shear, never flange width

• Beware the 𝝋 foul-up – multiple possible mistakes by students

• Assessment – combine homework, open-ended projects, and exam



THANK YOU!
rfloyd@ou.edu
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