

Applied Laboratory for Advanced Materials & Structures

Fall 2017 — Making Connections

Seismic Design of Shape Memory Alloy Reinforced Concrete Bridge Pier

Dr. AHM Muntasir Billah, P.Eng.

Bridge Engineer, Parsons

Dr. M. Shahria Alam, P.Eng.

The University of British Columbia

ACI Fall Convention

Outline

- Current seismic design philosophy
- Performance based seismic design (PBSD)
- PBSD for new materials
- PBSD Example on SMA-RC Pier
- Conclusion

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA A Applied Laboratory for Advanced Materials & Structures

Current Seismic Design Philosophy

Collapse Prevention

"Failure"

ACI Fall Convention

Applied Laboratory for Advanced Materials & Structures

Current Seismic Design Philosophy

"Failure"

ACI Fall Convention

UB

A Applied Laboratory for Advanced Materials & Structures

Current Seismic Design Philosophy

"Success -- ?"

ACI Fall Convention

Applied Laboratory for Advanced Materials & Structures

Current Seismic Design Philosophy

□ May result in bridge closures

- Excessive column damage
- Excessive lateral deflection
- Limited access; may or may not allow even emergency response vehicles

Extensive Repairs

- Patching of spalled concrete
- Shoring of spans
- Replacement
- Disrupts traffic
- Major economic loss

Improved Seismic Design

- Minimize residual drift
- ≻Minimize repair need
- Keep bridges operational
- ➢Reduce damage to plastic hinges
- Keep an energy dissipating system

Performance Based Design.....

Applied Laboratory for Advanced Materials & Structures

Performance Based Seismic Design

Hose et al. 2000

Is it enough to protect our investments? If not, what can we do?

ACI Fall Convention

Rocking bridge pier

aci

ACI Fall Convention

Applied Laboratory for Advanced Materials & Structures

Innovative Materials

Superelastic Shape Memory Alloy (SMA)

Steel

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Innovative Materials Reinforced Concrete Columns ≻Reduced residual deformation

Steel RC Column

SMA RC Column

ACI Fall Convention

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA Applied Laboratory for Advanced Materials & Structures

Performance Based Design of SMA-RC Pier

Applied Laboratory for Advanced Materials & Structures

Performance-based Damage States

Damage State Development

Properties of Different SMAs

	Alloy	٤S	E	fy	f _{p1}	f _{T1}	f _{T2}	Ref
		(%)	(GPa)	(MPa)	(MPa)	(MPa)	(MPa)	
SMA-1	NiTi ₄₅	6	62.5	401.0	510	370	130	Alam et al. 2008
SMA-2	NiTi ₄₅	8	68	435.0	535.0	335	170	Ghassemieh et al. 2012
SMA-3	FeNCATB	13.5	46.9	750	1200	300	200	Tanaka et al. 2010
SMA-4	CuAlMn	9	28	210.0	275.0	200	150	Shrestha et al. 2013
SMA-5	FeMnAlNi	6.13	98.4	320.00	442.5	210.8	122	Omori et al. 2011

 f_y (austenite to martensite starting stress); f_{Pl} (austenite to martensite finishing stress); f_{Tl} (martensite to austenite starting stress); f_{T2} (martensite to austenite finishing stress) , ε_s (superelastic plateau strain length); and *E* (modulus of elasticity).

Design and Geometry of Bridge Piers

ACI Fall Convention

Bridge Pier Configuration

Pier	Longitudinal	ρ _l (%)	Spiral	ρ _s (%)	
	Rebar				
SMA-RC-1	48-28M	1.12	15M @76 mm	0.70	
SMA-RC-2	48-28M	1.12	15M @76mm	0.70	
SMA-RC-3	48-20M	1.20	15M @76 mm	0.70	
SMA-RC-4	48-35M	1.75	15M @76 mm	0.70	
SMA-RC-5	48-32M	1.46	15M @76mm	0.70	

Capacity Curves

Finite Element Modeling

Concrete Model

Mander et al. [1988] & Martinez-Rueda and Elnashai [1997]

Steel Model

Menegotto and Pinto, 1973

Validation with Experimental Result

Fig. Comparison of experimental and numerical results (a) SMA-RC (SMA-1) bridge pier (Saiidi and Wang 2006). (b) SMA-RC (SMA-4) beam (Shrestha et al. 2013).

Different Hazard Levels

Proposed Damage State Framework

Damage	Damage	Functional	Description
Parameter	State	Level	
Cracking	DS-1	Immediate	Onset of hairline cracks
Yielding	DS-2	Limited	Theoretical first yield of longitudinal rehar
Spalling	DS-3	Service disruption	Onset of concrete spalling
Core Crushing	DS-4	Life safety	Crushing of core concrete

Maximum Drift Damage States

Figure . Dynamic pushover response and different damage states with distribution for SMA-RC-1 for (a) 2% in 50 years (b) 5% in 50 years and (c) 10% in 50 years probability of exceedance

ACI Fall Convention

Damage States of SMA-RC Bridge Pier

			SMA-1			SMA-	2		SM	A-3		SMA-	4		SMA-5	5	
L O		Drift (%)			Drift (%)				Drift (%)			Drift (%)		Drift (%)			
aramet	e State	Probability of Exceedance											ribution				
Ige F	Imag	2%	5%	10%	2%	5%	10%	2%	5%	10%	2%	5%	10%	2%	5%	10%	Dist
Dame	Da	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	
Cracking	DS-1	0.28	0.28	0.28	0.30	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	Uniform
Yielding	DS-2	1.68	1.76	1.86	1.66	1.72	1.80	2.28	2.42	2.58	1.74	1.83	1.95	1.10	1.16	1.21	Lognorm al
Spalling	DS-3	2.66	2.79	2.88	2.69	2.77	2.87	1.64	1.72	1.80	2.52	2.61	2.68	1.97	2.02	2.10	Normal
Crushing	DS-4	5.05	5.68	5.94	5.51	5.91	6.05	7.65	7.81	7.94	5.56	5.63	5.72	4.73	4.79	4.84	Gamma

Maximum Drift Damage States

Damage	Damage	Functional	Maximum Drift (%)						
Parameter	State	Level	Probability of Exceedance						
			10% in 50	5% in 50	2 % in 50				
Cracking	DS-1	Fully Operational	0.28	0.28	0.28				
Yielding	DS-2	Operational	1.86	1.76	1.68				
Spalling	DS-3	Life safety	2.88	2.79	2.66				
Crushing	DS-4	Collapse Prevention	5.94	5.68	5.05				

ALAMS Applied Laboratory for Advanced Materials & Structures

Residual Drift Damage States

Damage State	Functional Level	Description
Slight	Fully Operational	No structural realignment is necessary
(DS=1)		
Moderate	Operational	Minor structural repairing is necessary
(DS=2)		
Extensive	Life safety	Major structural realignment is required
(DS=3)		
Collapse	Collapse	Structure in danger of collapse from
(DS=4)		earthquake aftershocks

Residual Drift Damage States

Figure. Fragility curves in terms of residual drift at (a) 10% in 50 years (b) 5% in 50 years and (c) 2% in 50 years probability of exceedance

Applied Laboratory for Advanced Materials & Structures

Residual Drift Damage States

Damage	Functional	Description	Residual Drift, R_{Δ} (%)					
State	Level		Probability of Exceedance					
			10% in 50	5% in 50	2 % in 50			
Slight	Fully	No structural realignment is	0.24	0.28	0.33			
(DS=1)	Operational	necessary						
Moderate	Operational	Minor structural repairing is	0.48	0.55	0.62			
(DS=2)		necessary						
Extensive	Life safety	Major structural realignment	0.73	0.82	0.87			
(DS=3)		is required						
Collapse	Collapse	Structure in danger of	1.04	1.16	1.22			
(DS=4)		collapse from earthquake						
		aftershocks						

Prediction of Residual Drift

ACI Fall Convention

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

UBC

Applied Laboratory for Advanced Materials & Structures

μ-ξ Relationship of SMA-RC Pier

Of SMA-RC Pier PBSD

ACI Fall Convention

Design of SMA-RC Pier

- Location: Vancouver (Soil Class-C)
- Life Line Bridge
- EQ Return Period: 2475 Yr
- Functional Level: Operational
- Damage Level: Moderate
- Target RD =0.6%

ACI Fall Convention

ACI Fall Convention 10 2017

Design of SMA-RC Pier

Figure. (a) Cross section, (b) elevation and (c) finite element model of SMA-RC bridge pier

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Finite Element Modeling

Concrete Model

Mander et al. [1988] & Martinez-Rueda and Elnashai [1997]

Menegotto and Pinto, 1973

SMA Model

Auricchio and Sacco [1997]

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA Applied Laboratory for Advanced Materials & Structures

Performance Evaluation

ACI Fall Convention

Conclusions

- A new residual drift-based design method
- A comprehensive approach for PBSD of SMA-RC bridge piers
- Meets performance expectations
- Lower residual drift
- Less maintenance cost

Acknowledgement

Natural Sciences and Engineering Research Council of Canada (NSERC)

- Discovery Grant
- Industrial Postgraduate Studies
 Bourcet Engineering, Vernon, BC
 University of British Columbia (UBC)
- University Graduate Fellowship (UGF)

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

BOURCET

ACI Fall Convention

Fall 2017 — Making Connections

Thanks for your attention

Source:http://www.wsdot.wa.gov/publications /fulltext/Bridge/Shape_Memory.pdf

Questions/Comments

muntasir.billah@parsons.com shahria.alam@ubc.ca

