SR99 BORED TUNNEL

11112

Tutor Perin

Tutor Perini

ALASKAN WAY VIADUCT AND SEAWALL REPLACEMENT PROGRAM SEATTLE, WA October 16, 2017

INDEX

Overall Project Description Bored Tunnel Tunnel Liner Tunnel Logistics Mucking Out Instrumentation and Monitoring Tunnel Systems Tunnel Interior Structure

Overall Project Description

The Alaskan Way Viaduct; the Nisqually Earthquake

- DRAGADOS
- Built in the early 50's, the Alaskan Way Viaduct (AWV) is part of the State Route 99 that crosses downtown Seattle from South to North. It helped to relieve congestion of trains, trucks and wagons carrying cargo to and from ships.
- AWV used to carry 110,000 vehicles per day before demolition of the South ramp started, back in October 2011.

The Alaskan Way Viaduct; the Nisqually Earthquake

- In 2001, the 6.8 Nisqually earthquake damages the AWV, which is closed several months for inspection and limited repairs. The Viaduct and Seawall replacement project begins.
- In 2009 After evaluating the several options proposed, Governor, King County Executive, Seattle Mayor and Port of Seattle CEO recommend replacing the viaduct's central waterfront section with a bored tunnel beneath downtown. State Legislature approves bored tunnel funding.

Procurement Process

- Led by: Washington State Department of Transportation (WSDOT), in partnership with the Federal Highway Administration, King County, the City of Seattle and the Port of Seattle
- Type of Contract: Design-Build
- Dollar Range: \$1.34 Billion
- Project Funding: Washington State and Federal Funds
- Bid Date: October 28th, 2010
- Best value determined in December 9, 2010
- Contract signed: January 6, 2011
- NTP1: February 7, 2011
- NTP2: August 23, 2011, after Environmental Impact Statement (EIS) is approved

Scope of Work

<u>TBM tunnel</u>

57.35 feet diameter, 9.273 feet long, about **1,000,000** yd³ excavation

- North and South accesses
 - **540,000 yd³ excavation** including slurry walls and secant piles plus concrete slabs, including Southbound off and Northbound on ramps at the South end
- <u>2 Operation buildings</u> North (78,205 ft²) and South (52,339 ft²)
- <u>Tunnel systems</u>

Electrical, mechanical, ventilation, Gas monitoring, drainage and pumping, fire suppression, security, communication and Supervisory control and data acquisition (SCADA)

Bored Tunnel

TBM "Bertha", the Largest Ever Built

Evolution of EPB TBMs.

D=31 ft.

MADRID

SUBWAY

Dragados

1994

D=21 ft. VALENCIA SUBWAY 1990 Dragados

D=39.5 ft. BARCELONA SUBWAY 2002 Dragados

D=49.25 ft. M-30 MADRID 2005 Dragados

Bored Tunnel

Tunnel Liner

Tunnel Liner

- DRACE, affiliate of Dragados, manufactured the 1,440 rebar reinforced concrete rings in Puyallup, WA, in JV with local precaster Encon Washington, LLC.
- Precast concrete rings for this liner were the largest ever built with 56 ft OD (17 m), 52 ft ID (15.8 m), 6.5 ft length and 10 segments each, for a total weight per ring of 375,000 pounds (170 Tons), being the heaviest piece 38,500 lbs (17.5 Tons).

SR99 BORED TUNNEL

Tunnel Liner – Concrete Details and Quantities

Cement/Concrete Details

- 7,000 PSI
- Product Name: MaxCem Cement Type IS(X); (AASHTO M 240)
 - Standard Spec: 9-01.2(4), Concrete Blended Hydraulic Cement
 - Product Description: Blended hydraulic cement: Lafarge North America, Seattle, WA: Distributed from Seattle, WA, Type IS(X); Pasco, WA, Type IS(X); Spokane, WA, Type IS(X); and Vancouver, WA, Type IS(X).
- Product Name: Glenium 3400 NV (Concrete Admixture)
 - Standard Spec: 9-23.6, Concrete Admixture Type F Water-Reducing, High Range Admixtures
 - Product Description: Liquid high range water reducing admixture for concrete: Type F
- Product Name: Rheomac SF 100
 - Standard Spec: 9-23.11, Concrete Admix Microsilica Fume
 - Product Description: Dry compacted silica fume mineral admixture.

Concrete Quantities

- **116,395 cubic yards** total for the precast tunnel liner segments
 - 1,425 rings in total
 - 81.7 cubic yards of concrete per ring

Tunnel Logistics

- Segments are hauled by track from Puyallup to the jobsite in Seattle.
- A 56 tons gantry crane lower segments down to the bottom of the assembly shaft to the top of the rubber tires vehicles which ship them to the TBM.
- Once in the TBM back up, segments are offloaded and a vacuum segments crane transports them to the segmentsfeeder, from where the segments erector grabs them by vacuum as well and install the inside the tail shield.

Tunnel Logistics Map

Mucking Out

Muck Disposal: Barging

- The TBM screw conveyors transfer the muck from the excavation chamber to a continuous tunnel conveyor belt and an overland conveyor belt system, capable of handling 2,800 t/h, which loads the muck onto barges.
- A portion of adjacent T46 has been leased from Port of Seattle thru WSDOT to hold a temporary muck bin, used to dump muck in case of overflow, "contaminated" material or just lack of barges.
- Muck can be hauled by trucks or loaded onto barges by means of a reclaim conveyor.

DUBLES OF THE OWNER OWNER OF THE OWNER OWNER

Instrumentation & Monitoring

Construction Monitoring Zone

Technical Requirements TR2.52 defines allowable deformation tolerances, Alert level and Maximum level for each type of structure A or B along the alignment.

Real Time Monitoring

- Surface and subsurface ground:
 - 03-NSSP, 04-ARSP
 - 05-INCL, 07-MPBX
- Surface structures and assets;
 - 01-MSMP, 02-ASMP, 09-TTM, 10-LLS, 11-CG, 13-MS
- Utilities
 - 16-USP (Primary), 22-USP (Secondary)
- Tunnel lining deformation
 - 08-LC, 12-SG, 17 TTL
- Groundwater
 - 06-PZ, 21-DW

Geoscope Symbol Key

Monitoring Point Type	Code	Symbol		
Manual Structure Monitoring Point	(MSMP)	01	Triangle	A
Automatic Structure Monitoring Point	(ASMP)	02	Star 4	×
Near Surface Settlement Point	(NSSP)	03	Occitan Cross	+
Automatic Reflectorless Settlement Point	(ARSP)	04	Star 6	*
Inclinometer (Group)	(INCL)	05	Square Star 8	*
Piezometer & Observation Wells	(PZ)	06	Cross	+
Extensometer (Group)	(MPBX)	07	Squared Star	٠
Load Cells	(LC)	08	Diamond	۲
Tiltmeter	(TTM)	09	Cross	+
Liquid Level Sensor	(LLS)	10	Hour Glass	X
Crack Gauge	(CG)	11	Square	
Strain Gauges	(SG)	12	Dodecagon	•
Motion Sensor	(MS)	13	Hour Glass	X
AWV Project Borings	(APB)	14	Square	
Deep Benchmark	(DBM)	15	Hexagon	٠
Utility Settlement Point (Primary)	(USP)	16	Square Star 8	*
Tell Tales	(TTS)	17	Hexagon	٠
Seawall Monitoring Points	(SMP)	18	Occitan Cross	+
Secondary Control Points	(SCP)	19	Hexagon	٠
Pile Survey Points	(PSP)	20	Star 4	×
Dewatering Wells	(DW)	21	Cross	+
Utility Settlement Point (Secondary)	(USP)	22	Star 6	*
In-Place Inclinometer (Group)	(IPI)	23	Hour Glass	X
Strandmeter	(SM)	24	Dodecagon	•
Pike Adit Tilt Beams	(TTB)	25	Diamond	۲

< -- Main View

Tunnel Systems

124

Tunnel Fire, Life & Safety Systems

TUNNEL VENTILATION

Single Point Extraction 8x500HP Centrifugal Fans 17 Jet fans 188 Tunnel Dampers CFD designed

TUNNEL LIGHTING

Roadway Stainless Steel Linear Fluorescent Lighting Emergency exit LED, SCADA controlled Exit Signs

Tunnel Fire, Life & Safety Systems (II)

FIRE PROTECTION

Sprayed Fire Protection Material Roadway Deluge Sprinkler System Roadway Linear Heat Detector (LHD) Wet sprinkler systems in Ancillary Areas

Tunnel Fire, Life & Safety Systems (III)

TRAFFIC CONTROL SYSTEMS (SICE)

SCADA & Intelligent Traffic Systems (ITS) Automatic incident detection Traffic variable signs

Communications Infrastructure Radio Fiber Optic Emergency phones

Tolling Infrastructure Tolling gantries

Tunnel Interior Structure

Structural Elements

Construction sequence

- PERI Formwork Systems provided all supporting equipment
- Cast In Place Structures
 - Corbels, Lower Walls, Upper Walls
 - Rebar Cages
 Fabricated on
 Surface
 - Upper Deck, Side Deck
 - Cages tied in Place
- Precast Structure
 - Lower Deck
 - Placed on Corbel
 - Closure Pours

PERI Formworks

Plan Submittal Description	Units	QTY
Corbel Rebar Traveler	EA	1
Corbel Formwork Traveler	EA	1
Corbel Formwork L=54'	EA	2
Wall Rebar & Formwork Traveler	EA	1
Wall Formwork Walls L=54'	EA	2
Corbel Formwork and Rail Support		
Egress Slab Formwork		
Formwork Slab 1 L=54'	EA	6
Formwork Slab 2 L=54'	EA	6
SB Roadway Formwork		
Slab Formwork Top Slab L=54'	EA	6
Gantry For Bottom Precast Slab	EA	1

Fire Proofing

Sprayed Fire Protection Material over Continuous Wire Mesh

Stainless Steel supplemental structural supports @ 10ft.

Summary of Quantities – Interior Structure

<u>Concrete volume</u>								
		VOLUME (54 ft)			VOLUME TOTAL (9270 ft)			
	AREA sf	cf	су	m ³	cf	су	m ³	
WEST CORBEL	33.89	1,830.06	67.78	51.82	314,160.30	11,635.57	8,896.03	
EAST CORBEL	18.24	984.96	36.48	27.89	169,084.80	6,262.40	4,787.95	
WEST WALL	24.90	1,344.60	49.80	38.07	230,823.00	8,549.00	6,536.18	
EAST WALL	20.07	1,083.78	40.14	30.69	186,048.90	6,890.70	5,268.32	
SOUTHBOUND SLAB	55.35	2,988.90	110.70	84.64	513,094.50	19,003.50	14,529.22	
NORTHBOUND SLAB	43.50	2,349.00	87.00	66.52	403,245.00	14,935.00	11,418.63	
					1,816,456.50	67,276.17	51,436.33	

Concrete Valuma

Rebar Weight

	lb/ft	kg/m	(lb)	(kg)	TOTAL (lb)	TOTAL (kg)
WEST CORBEL	250.00	372.38	13,500.00	6,129.29	2,317,500.00	1,052,331.75
EAST CORBEL	135.00	201.08	7,290.00	3,309.82	1,251,450.00	568,259.15
WEST WALL	255.00	379.82	13,770.00	6,251.88	2,363,850.00	1,073,378.39
EAST WALL	210.00	312.80	11,340.00	5,148.61	1,946,700.00	883,958.67
SOUTHBOUND SLAB	93.00	138.52	5,022.00	2,280.10	862,110.00	391,467.41
NORTHBOUND SLAB	542.00	807.31	29,268.00	13,288.31	5,024,340.00	2,281,455.23
			80,190.00	36,408.00	13,765,950.00	6,250,850.60

Photos of Tunnel Interior Construction

Fireproofing Installation

Building a Highway Inside TBM Launch Pit

South Tunnel Portal

North Tunnel Portal

DRAGADOS

Before

In January 2014, Seattle Tunnel Partners' crews were building the north end of the SR 99 tunnel inside this giant pit a few blocks east of the Space Needle. The photo was taken on the north ledge of the pit, looking south toward downtown Seattle.

January 2014

August 2016

This is the same location two-and-a-half years later. The north end of the tunnel now lies beneath the SR 99 tunnel's north portal operations building, and new sections of Harrison Street and Sixth Avenue North.

North Tunnel Portal

Questions?

Hell var

.....

phillin int

IN IN VE NO IN

田岡田田

田田田田田

TI 26 EE IN M

田田 副 副 田

115 HI

ME IEE E

11 mm

ER DEF

STREET, STREET

NAMES OF TAXABLE

STREET, STREET, ST.

PERSONAL PROPERTY.

TAXABLE INCOME.

COLUMN STREET

CONCEPTION AND

STREET, STREET

STREET, STREET

COLUMN TWO

STATESTIC STATE

COMPANY OF MER

source the fil

ACCREDING ADDRESS ADDR

CORN ANDER TREES

新田田田田田田田田田田田

63

4-14100

....

SALAR BERRY AND STATE OF A DESCRIPTION O

GH

-

14-6

東(重)用(茶

THE REPORT OF TH

"Chinne

AT MERINE AND A DESCRIPTION OF A DESCRIP