PERFORMANCE LIMIT STATES OF RCFST DRILLED SHAFTS

Speaker: Diego Aguirre, PhD

Principal Investigators: Mervyn Kowalsky, PhD James Nau , PhD Mo Gabr , PhD

Outline

- 1. Introduction
- 2. Experimental Program
- 3. Analytical Studies
- 4. Performance Limit States
- 5. Conclusions

Reinforced Concrete Filled Steel Tube (RCFST) Drilled Shafts

RCFST Cross Section

Past Research: Brown et al. (2015)

- 12 Large-scale tests
- D/t ratios of 33 to 160

D/t ratio

Equilibrium and strain compatibility

Past Research: Brown et al. (2015)

Progression of Buckling for "Thin Wall" Tubes

Past Research: Brown et al. (2015)

Progression of Buckling for "Thick Wall" Tubes

Outline

1. Introduction

- 2. Experimental Program
- 3. Analytical Studies
- 4. Performance Limit States
- 5. Conclusions

Test Setup

Test Setup

Example: Test #11 – August 18, 2016

Test # 11

Reinforced Concrete Filled Steel Tube in Soil

Outer diameter	:	D	=	12.75 in
Tube Thickness	•	t	=	0.129 in
Nominal D/t ratio	•	D/t		95
Above ground height	:	L_1		7.24 D

Test Day : August 18, 2016

Failure Mechanism

Tensile Strains Prior Fracture:

Outline

1. Introduction

- 2. Experimental Program
- 3. Analytical Studies
- 4. Performance Limit States
- 5. Conclusions

Analytical Model: finite element, fiber-based approach (OpenSees)

Performance Limit States of RCFST Drilled Shafts

NC STATE

UNIVERSI

Parametric Study: general considerations

- Simulations on single RCFST specimens
- \blacktriangleright Internal reinforcement: $\rho = 2\%$ and $\rho_v = 1\%$
- Material properties:

Concrete:

- Steel tube:
- **Reinforcement:**

Basic parameters:

A706-Gr.60	f_{yre}	= 462	Мра	(66 k	si)
APIx52L	f_yte	= 396	Мра	(57.2	ks
	f_{ce}'	= 36.4	MPa	(5.2 k	(si)

Head Fixity	Diameter (mm)	ALR (%)	D/t Ratio	La/D Ratio
Pinned	610	5	48	4
Fixed	1,220	10	64	8
		15	95	12

(57.2 ksi)

Parametric Study: soil considerations

- Uniform soil layer
- Deep enough to achieve zero rotation at shaft tip
- Undrained conditions for clay Matlock
- > Dry or moist conditions for sand API + Reese and Van Impe

Soil parameters:

			Soil Strength and Stiffness				
			S	Sand	Clay		
Soil Type	Soil Profile	γ (kN/m³)	Ø (°)	n _h (kN/m³)	C _u (kPa)	ɛ 50	
Sand	Flexible	15.7	30	9500	12	0.020	
Clay	Medium	17.3	35	27200	36	0.010	
	Stiff	18.9	40	61100	72	0.005	

System Behavior

Eklutna River Bridge (echoak.com)

CT

System Behavior: fixed-head RCFST

System Behavior: fixed-head RCFSTs

Top plastic hinge

System Behavior: fixed-head RCFSTs

Inground plastic hinge

Outline

- 1. Introduction
- 2. Experimental Program
- 3. Analytical Studies
- 4. Performance Limit States
- 5. Conclusions

Equivalent Cantilever Plastic Hinge Model

Pinned-Head RCFSTs: Aguirre et al. 2017

4. Performance Limit States

Performance Limit States: pinned-head shafts

Limit state curvature: $\phi_{LS, t} = \frac{\mathcal{E}_t}{D' - c}$ D' = D - t

NC ST

Note: steel tube provides confinement and flexural strength

Inground plastic hinge strain limits

4. Performance Limit States

Equivalent Cantilever Plastic Hinge Model

Fixed-Head RCFSTs: Aguirre et al. 2017

4. Performance Limit States

Performance Limit States: fixed-head shafts

Limit state curvature: $\phi_{LS,t} = \frac{\varepsilon_t}{d-c}$ $d = D_{conc} - c_{bl} - \frac{d_{bl}}{2}$

Note: steel tube provides confinement only

Top plastic hinge strain limits (POLA, 2010)

Strain	Performance Level				
	Serviceability	Damage Control	Ultimate		
Tension	0.015	$0.6\varepsilon_{sm} \leq 0.06$	$0.8\epsilon_{\rm sm} \leq 0.08$		
KISINGER CAMPO					

Outline

- 1. Introduction
- 2. Experimental Program
- 3. Analytical Studies
- 4. Performance Limit States
- 5. Conclusions

Pinned-Head Shafts:

- Displacement capacity up to μ_3 (even for D/t = 95)
- Controlling LS: tube tensile strain of 2.5%
- PJP spiral welds negatively influence performance

Fixed-Head Shafts:

- Displacement capacity up to μ_4
- Controlled by top plastic hinge only
- Controlling LS: bar tensile strain of 8% (POLA, 2010)
- In-ground hinge has reserved capacity

Thank you!

Diego Aguirre, PhD, El Structures Engineer

Email: Diego.Aguirre@kisingercampo.com

4800 Six Forks Rd., Suite 120, Raleigh, NC 27609

Acknowledgements:

KISINGER CAMPO

