

MODELING TILT-UP PANELS

ACI 551

Jeff Griffin October 23, 2016

LEARNING OUTCOMES

- Understand the design issues associated with tilt-up panels
- Recognize elements of the ACI 318 procedure for designing panel reinforcement
- Identify alternate methods of analysis for panel design

DISCLAIMER

Reference to specific computer programs or analysis tools is for illustrative purposes only and should not be construed as an endorsement by ACI or LJB

AGENDA

- Review of design considerations
- Example calculation using ACI 318
- Finite element comparison
- Modeling of "non-standard" panels

- Panel loads
 - Axial force, often
 eccentric
 - Out-of-plane force
 - Secondary moment
- Simply-supported member model

- Iterative procedure
 - Apply moment
 - Determine deflection
 - Add P- Δ to moment and repeat until convergence

$$M_{max} = M_a + P\Delta_{max}$$

- Moment magnification
 - Define stiffness based on cracked moment of inertia
 - Rewrite Δ in terms of moment and stiffness
 - Single solution with no iteration

$$M_{max} = M_a \left\{ \frac{1}{1 - P/K_b} \right\} = M_a \delta_b$$

- Cracked moment of inertia uses "effective" area of steel $A_{se} = A_s + \frac{P_u}{f_v} \left(\frac{h}{2d}\right)$
- Efficient selection of panel reinforcement

AGENDA

- Review of design considerations
- Example calculation using ACI 318
- Finite element comparison
- Modeling of "non-standard" panels

- Panel model
- ACI 318 slender wall method

- $P_{DL} = 7.2 \text{ k}$
- $P_{LL} = 7.5 \text{ k}$
- $e_{cc} = 3$ inch
- w = 27.2 psf
- $I_c = 31.0 \text{ ft} 1.5 \text{ ft} = 29.5 \text{ ft}$
- Panel self weight above centerline = 19.0 k

- Typical load cases
 - Load Case 1: 1.2D + 1.6Lr + 0.5W
 - Load Case 2: 1.2D + 0.5Lr + 1.0L + 1.0W
 - Load Case 3: 0.9D + 1.0W
- Assume 15-#4 bars each face (A_s =3.00 in²)

- $P_{ua} = 1.2(7.2 \text{ k}) + 1.6(7.5 \text{ k}) = 20.6 \text{ k}$
- $P_{um} = 20.6 \text{ k} + 1.2(19.0 \text{ k}) = 43.4 \text{ k}$
- $w_u = 0.5(15.0 \text{ ft})(27.2 \text{ psf}) = 204 \text{ plf} = 0.204 \text{ klf}$
- $\frac{P_{um}}{A_g} = \frac{43.4 \text{ k}(1000 \text{ lb/k})}{6.25 \text{ in.}(15.0 \text{ ft})(12 \text{ in./ft})}$

= 38.6 psi < 0.06*f*_c' = 240 psi

EXAMPLE CALCULATION

•
$$A_{se} = A_s + \frac{P_{um}}{f_y} \left(\frac{h}{2d}\right) = 3.0 \text{ in.}^2 + \frac{43.4 \text{ k}}{60 \text{ ksi}} \left(\frac{6.25 \text{ in.}}{2(5.0 \text{ in.})}\right) = 3.45 \text{ in.}^2$$

•
$$a = \frac{A_{se}f_y}{0.85f'_c b} = \frac{3.45 \text{ in.}^2(60 \text{ ksi})}{0.85(4 \text{ ksi})(15.0 \text{ ft})(12 \text{ in./ft})} = 0.338 \text{ in.}$$

•
$$c = \frac{a}{0.85} = \frac{0.338}{0.85} = 0.398$$
 in.

 $\frac{c}{d} = 0.080 < 0.375$: tension-contolled (refer to R9.3.2.2)

•
$$I_{cr} = \frac{E_s}{E_c} A_{se} (d-c)^2 + \frac{l_w c^3}{3} = 8.044(3.45)(5.0-0.398)^2 + \frac{(15.0 \text{ ft})(12 \text{ in./ft})(0.398)^3}{3} = 592 \text{ in.}^4$$

Where l_w is the width of the panel (b)

•
$$\phi M_n = \phi A_{se} f_y \left(d - \frac{a}{2} \right) = 0.9(3.45)(60) \left(5.0 - \frac{0.338}{2} \right) = 75.1 \text{ k-ft}$$

•
$$K_b = \frac{48E_c I_{cr}}{5/c^2} = \frac{48(3605 \text{ ksi})(592 \text{ in.}^4)}{5[29.5 \text{ ft}(12 \text{ in./ft})]^2} = 163 \text{ k}$$

•
$$M_{ua} = \frac{w_u/_c^2}{8} + \frac{P_{ua}e_{cc}}{2} = \frac{0.204 \text{ kdf}(29.5 \text{ ft})^2}{8} + \frac{20.6 \text{ k}(3 \text{ in.})}{2(12 \text{ in./ft})} = 24.8 \text{ ft-k}$$

•
$$M_u = \frac{M_{ua}}{\left(1 - \frac{P_{um}}{0.75 K_b}\right)} = \frac{24.8 \text{ ft-k}}{\left[1 - \frac{43.4 \text{ k}}{0.75(163 \text{ k})}\right]} = 38.4 \text{ ft-k} < \phi M_n$$

•
$$\Delta_u = \frac{M_u}{0.75K_b} = \frac{38.4 \text{ ft-k}(12 \text{ in./ft})}{0.75(163 \text{ k})} = 3.76 \text{ in.}$$

AGENDA

- Review of design considerations
- Example calculation using ACI 318
- Finite element comparison
- Modeling of "non-standard" panels

- ACI 318 slender wall method

 – 15-#4 EF
- Finite element model . . .

• 14-#4 each face

Asy 0.182

0.172

0.162

0.152

0.141

0.131

0.121

0.111

0.100

0.090

- ACI 318 slender wall method
 - 10-#4 EF left leg
 - 11-#4 EF right leg
- Finite element method

- 9-#4 EF left leg
- 10-#4 EF right leg
- Higher reinforcement concentration at corner of opening

- Two foot strip alternate
- 9-#4 each face, each side

AGENDA

- Review of design considerations
- Example calculation using ACI 318
- Finite element comparison
- Modeling of "non-standard" panels

"Non-standard" panels

- Canopy load
- Isolated foundation support
- Screen wall
- Multi-story panels

CANOPY

Concentrated laterals load

CANOPY

Concentrated laterals load

 Conservatively add to applied moment

$$M_{ua} = \frac{w_{u}\ell_{c}^{2}}{8} + \frac{P_{ua}e_{c}}{2} + \frac{H_{u}ba}{\ell_{c}}$$

 P-Δ includes vertical load component from canopy, too

Concentrated laterals load

ISOLATED FOUNDATION SUPPORT

Design

Critical

cross section

 b_d

strip

Joist load **Concentrated vertical load** 2

ISOLATED FOUNDATION SUPPORT

Concentrated vertical load

- Large axial load at panel corners
- Similar to girder load, only no eccentricity

ISOLATED FOUNDATION SUPPORT

SCREEN WALL

Cantilevered panel

SCREEN WALL

Cantilevered panel

 Moment at the support of a cantilevered span of height *a* is exactly the same as the mid-height moment of a simply supported span, *l_c*, if 2*a*=*l_c*

$$M_{ua} = \frac{w_u a^2}{2} = \frac{w_u \left(\frac{\ell_c}{2}\right)^2}{2} = \frac{w_u \ell_c^2}{8}$$

SIX-STORY OFFICE

Temporary condition

- Support at foundation and brace attachment
- Construction-period wind load

Final condition

- Large axial load
- Positive and negative moment regions

SIX-STORY OFFICE

- Axial load due to
 - Panel self-weight
 - Gravity loads of floors and roof
 - Load from overturning
- Moments due to
 - Out-of-plane
 - In-plane (shear acting at height)

SIX-STORY OFFICE

- Column with bi-axial moment analysis
- Alternates
 - Finite element model
 - Frame model

QUESTIONS?

FOR MORE INFORMATION

Jeff Griffin, Ph.D., P.E., P.M.P.

- <u>Jgriffin@LJBinc.com</u>
- (937) 259-5182
- LJBinc.com
- @LJBinc

