

Implementation of Performance Specifications for Concrete at the Illinois Tollway

Dan Gancarz, P.E. *Applied Research Associates, Inc.* March 28, 2017

Illinois Tollway System

Move Illinois Program

Performance-Engineered Mix (PEM) Design Specifications

Goals For PEM Designs

Strength

Adequate, but not excessively over-designed

Durability

- Freeze/thaw
- Shrinkage
- Chloride penetration resistance
- Alkali-silica reaction (ASR)

Constructability

Batching

ILLINOIS

The Illinois Tollway

• Workability

Sustainability

- Increased supplementary cementing material (SCM) usage
- Recycled material

Timeline Of PEM Specifications And Designs At The Tollway

Tollway Mix Performance Requirements

Parameter	Test Method	Mix Types
Compressive strength	AASHTO T 22	All
Flexural strength	AASHTO T 97	Pavement only
Slump	AASHTO T 119	All
Plastic air	AASHTO T 152	All
Length change	AASHTO T 160	All except pavement and CA
Ring shrinkage	ASTM C 1581	HES, HPC, CA
ASR	AASHTO T 303	All except CA
Hardened air	ASTM C 457	All except CA
Chloride penetration	AASHTO T 277	HES, HPC

Case Studies

Presented by Dan Gancarz on March 28, 2017

Jane Addams Memorial Tollway (I-90) Rebuilding and Widening Project

High-Performance Concrete (HPC) for Bridge Decks

HPC Concrete Requirements

Proportioning

- Material from approved sources
- ASR
 - Maximum total alkali content contributed by Portland cement ≤ 4 lb/yd³ or test
- Shrinkage
 - 1.5 gal./cy. SRA and < 605 lbs./cy total cementitious or ring shrinkage
- Water/cementitious ratio during production
 - Design 0.03, + 0.00

Properties

- Compressive strength
 - 4,000 psi at 14 days
- Plastic air
 - Design ± 1.5 percent, minimum 4.0
- Slump
 - 3 8 inches
- Freeze/thaw or hardened air (trial batch)
- Slump loss (trial batch)
- Linear shrinkage (trial batch)
- Chloride penetrability (trial batch)

12

Prairie Material Tollway HPC

Material	Quantity	
Portland cement	335 lbs./cy.	
Fly ash – class C	90 lbs./cy.	
Slag cement	150 lbs./cy.	
Water	230 lbs./cy.	W
Coarse aggregate (CM 11)	1700 lbs./cy.	
Lightweight fine aggregate	395 lbs./cy.	
Fine aggregate (FM 02)	860 lbs./cy.	D
Water reducer – type A	4 – 6 oz./cwt.	
Water reducer – type F	1 – 6 oz./cwt.	
Air entrainment	0.4 – 3 oz./cwt.	
Retarder	1 – 6 oz./cwt.	
Shrinkage reducing admixture	0.5 gal./cy.	_

w/cm – 0.40

Design air – 6.5 percent

Design slump – 5.0 in.

Ternary Optimized (TL) Concrete for Pavement

Slip-Form Class TL Concrete Requirements

Proportioning

- Material from approved sources
- Ternary
 - 35 to 50 percent SCM
- Optimized gradation
 - 2 coarse aggregates
 - Virgin
- ASR
 - Maximum total alkali content contributed by Portland cement ≤ 5 lb/yd³
- Water/cementitous ratio during production
 - Design 0.03, + 0.00

Properties

- Compressive strength
 - 2,500 psi at 3 days
 - 3,500 psi at 14 days
 - 6,500 psi at 28 days (target)
- Flexural strength (trial batch)
 - 650 psi at 14 days
- Hardened air (trial batch)
 - Spacing factor ≤ 0.008 in.
 - Specific surface $\geq 600 \text{ in}^2/\text{in}^3$
 - Total air content ≥ 4.0 percent
- Plastic air
 - 5.5-8.0 percent
- Slump
 - ¼" slump edge next to adjacent pavement otherwise ½" slump edge

Terrell Materials Class TL

Material	Quantity	
Portland cement	303 lbs./cy.	
Fly ash – class F	98 lbs./cy.	
Slag cement	99 lbs./cy.	w/cm – 0.42
Water	210 lbs./cy.	Design air –
Coarse aggregate (CM 11)	1650 lbs./cy.	
Intermediate aggregate (CM 16)	428 lbs./cy.	Design slum
Fine aggregate (FM 02)	1186 lbs./cy.	
Water reducer – type A	3 – 5 oz./cwt.	
Air entrainment	0.5 – 3 oz./cwt.	
Retarder	2 – 5 oz./cwt.	

6.5 percent p – 1.5 in.

Class TL Combined Gradation

Presented by Dan Gancarz on March 28, 2017

Tarantula Curve

Presented by Dan Gancarz on March 28, 2017

Summary And Future Changes

Performance Vs. Prescriptive

Reduced cement content

- Bridge deck
- Pavement

Increased SCM usage

- More ternary mixtures
- Higher replacement percentages

Focus on durability

- Chloride penetration resistance
- Shrinkage

LINOIS

The Illinois Tollway

• Workability

Successes To Date With Performance Specifications

Ternary black rock mixes for composite pavement

- 2013/2014
- Approximately 200,000 cubic yards

Ternary optimized pavement mixes

- 2015/2016
- Approximately 500,000 cubic yards
- Most for performance-related construction specifications

HPC for bridge decks

- Used since 2013 for more than 100 bridge decks
- No placement or finishing issues
- Significantly reduced early age cracking in bridge decks

Lessons Learned

Stakeholder buy-in

- Agency
- Contractor
- Concrete producer

Material source changes

- Portland cement
- Fly ash
- Aggregate

Constructability

• Contractor risk/reward

New PCC Performance Measures Possibly Coming

Resistivity (bulk) measurements for formation factor

- To replace the chloride penetration test (AASHTO T 277)
- To be a general measure of durability

Super air meter or rapid/easier, hardened air tests

- To replace current hardened air test (ASTM C 457)
- Possibly to replace plastic air tests as well

Box or V-Kelly test for workability (only for designs)

• Box test currently used for trial batches

Service life for bridge decks

 Use chloride penetration resistance or corrosion inhibitor while maintaining crack-resistance to achieve 50-year service life with epoxy coated reinforcement

Questions?

Thank You