

Advances in High-Strength Reinforcing Bar Research in the U.S.

Wassim M. Ghannoum

University of Texas at San Antonio

March 26th, 2017

Roadblocks for Implementing HSRB

- I Material Issues
 - Stress-strain behavior
 - Fatigue behavior
 - Production Repeatability

2- Structural Issues

- Stiffness
- Strain compatibility
- Bar demands
- Detailing

Material Issues

Stress Strain Behavior

Stress Strain Behavior

D

Yield plateau?

Stress Strain Behavior

Other Issues

What about cyclic fatigue?

What properties should the mills target?

Structural Issues

Overview of Structural Concerns

- Higher strain at yield
 - larger cracks
 - larger deflections
 - o strain compatibility
 - effectiveness as shear reinforcement
- Higher strength
 - larger tensile forces
 - increase in bond demands
 - increased forces in hooks and heads
 - \circ larger compressive forces
 - increased bar buckling susceptibility given the same lateral bracing
- Less ductile bars
 - less ductility for seismic members
- Tensile-to-yield strength (T/Y) ratio
 - plasticity spread
 - \circ strain concentration at cracks
 - higher strains can lead to premature fracture

Industry needs guidance from engineers and researcher about which properties to achieve in HSRB

Targeted Material and Structural Testing

Ghannoum, W.M., Slavin, C.M., "Low-Cycle Fatigue Performance of High-Strength Steel Reinforcing Bars," ACI Materials Journal, V. 113, No. 6, pp. 803-14, 2016.

Slavin, C.M., Ghannoum, W.M., "Defining Structurally Acceptable Properties of High-Strength Steel Bars through Material and Column Testing, PART I: MATERIAL TESTING REPORT," (05-14), Charles Pankow Foundation, pp. 135, August 2015.

Experimental Program

Compare low-cycle fatigue behavior of HSRB and grade 60 bars

- Grades
 - ▶ 60; A-706
 - ▶ 80; A-706
 - I00; "Ductile"
- Bar Sizes
 - #5 Transverse
 - **#8 Longitudinal**
 - #11 Longitudinal
- Manufacturing Techniques
 - Microalloying with Vanadium
 - Quenching and Tempering

- Clear-Spans
 - 4d_b
 - ▶ 5d_b
 - 6d_b
- Loading Protocols:
- 2 per bar size
 - ±2% and +4%, -1%
 - ±2% and +4%, 0%

Typical Test

- ±2%

- 6d_b

#8

Ghannoum Vision System

Grade 100 HSRB

- Overall grade 100 bars showed ~90% of cycles to failure than grade 60 bars
- 2. Large variability in performance of grade 100
 - 1. Worse performance for larger bars
 - 2. Variable performance at low clear spans
 - 3. Significant differences between manufacturing processes

Results of Cyclic Tests – #8 at $\pm 2\%$

Grade 80 HSRB

- Large variability in performance of grade 80 bars
 - 1. Some samples performed much better than grade 60
 - 2. Others much worse (~50% of cycles to failure of grade 60)
 - 3. Specifically A706 bars performed much worse
- 2. Few tests on grade 80 bars in this first study

Column Testing Program

Series I: HSRB in Shear and Confinement

Three columns under high shear and axial stresses Results published in ACI Structural Journal May-June 2016

Series 2: Plasticity Spread and Strain Demands

Four columns under low shear axial stresses Testing completed – Report published

Material Properties

Global Results

- Almost identical behavior for CS60 and CS80
- Both specimens sustained shear and axial failures at large drifts and remained stable up to a drift ratio of 5.5%

Global Results

Gr 60Pushed after lowering axial load.Gr 80Test Stopped +9.5%Test Stopped -8.4%

Global Results

CS100 200 First Longitudinal Reinf Yield First Transverse Reinf Yield 150 ▲ First Flexural Crack Lateral Load (kips) 100 **First Inclined Crack** Peak Lateral Load Initiation of Lateral Strength Loss* 50 0 -50 -100 -150 -200 -10 -8 -6 -4 -2 0 2 6 8 10 12 4 Lateral Drift Ratio (%)

Bond failure at a drift ratio of 3% Deficiency in ACI 318 anchorage provisions / Ballot in progress

CS 100

Test Stopped +11.5%

Same trends in transverse bars

Bar

CS100 strain ~100% larger than CS60

Series 1

Low-Cycle Fatigue Demand to Capacity

> HSRB may need better low-cycle fatigue performance than grade 60 bars

D

- Maximize strain demands in the bars
- Investigate three main types of HSRB being produced in US

- Moderate axial load:
 I 5% of gross capacity
- Low shear stresses: $_{\circ} < 4.0\sqrt{f_c'}$
- Concrete compressive strength:
 5 ksi
- Same longitudinal reinforcement ratio and bar arrangement
- Hoop spacing varied

Design

#6 longitudinal bars in all columns

D

Specimen	Yield Strength (ksi)	Ultimate Strength (ksi)	T/Y Ratio	Uniform Elongation (%)	Ultimate Elongation (%)
CHI00	100.0	127.2	1.27	7.6	10.4
CL100	106.4	123.4	1.16	8.6	12.5
CM100	124.2	157.4	١.27	4.9	9.8
CH60	64.4	93.3	1.45	11.8	17.6

Test Results

- Similar behavior bar fracture failure mode
- All specimens completed at least one full cycle to 5.5% drift ratio, before significant bar buckling or bar fracture.

Failure Mode

Mean tension strain in longitudinal bars at critical section (normalized by section effective depth d)

Complex behavior

D

- Directly comparable tests CLI00 and CHI00 indicate influence of T/Y ratio
- A1035 bars behave differently

- Overall similar and good seismic behavior for all four columns regardless of steel type and grade
- Strain demands in longitudinal bar related to
 - Axial load
 - Bar strength
 - Bar T/Y ratio
 - Shear stress

- But what is an acceptable fatigue performance for HSRB?
 - Follow up project is investigating this further

Performance Characterization of Beams with High-Strength Reinforcement

Project Team Duy Vu To, Nick Hardisty, Jack Moehle Berkeley

<u>Advisory Committee</u> Dominic Kelley, Ron Klemencic, Andy Taylor, Loring Wyllie

Sponsors and Contributors

American Concrete Institute Always advancing

Test Setup

Acceptable Elongations and Low-Cycle Fatigue Performance for High-Strength Reinforcing Bars 2016 to 2018 timeline

Acceptable Performance for HSRB

Tasks

- 1. Quantify low-cycle fatigue performance of HSRB in production in the U.S.
 - Associated experiments working with some mills to improve their bar performance
- 2. Develop model for predicting bar fracture in concrete members during seismic motions
 - Columns , beams, wall, coupling beams
- 3. Quantify differences in probability of collapse of seismically designed buildings due to reinforcement differences (in collaboration with G. Deierlein at Stanford)
- 4. Recommend design and ASTM bar specification adjustments to committee consensus probabilities of collapse

Objective and Scope

Influence from high-strength reinforcing steel:

- Reduced initial stiffness (less steel area, same $f_v A_s$)
- Damage Concentration (lower T/Y ratio)
- Premature fracture (lower fracture resistance)

Kuanshi Zhong & Greg Deierlein; Stanford University

Broader Ongoing Research

While steel bar production and ASTM specifications are being finalized

Ongoing and Future Research

Charles Pankow Foundation commissioned study

"Roadmap for the use of high-strength reinforcement in reinforced concrete design," Applied Technology Council Project 115

- Over \$26 million of research needed to get Grades 80 and 100 into ACI 318 standard over the next decade
- Bar Bends
- Gravity Beams
- Shear Walls
- Anchorage and Bond
- Coupling Beams

Concrete Reinforcing Steel Institute

aciFoundation

Performance of HSRB Bends

Objective

Quantify residual capacities of bends and recommend bend diameters for HSRB

Zhao, S.D., Ghannoum, W.M., "Setting Bar-Bending Requirements for High-Strength Steel Bars," (01-15), Charles Pankow Foundation, pp. 92, July 2016.

Test Matrix

Test variables for bend/re-bend tests: Bar Size, Manufacturing Process, Grade, Bend Diameter, and Strain Aging

- I. Manufacturer I (MI): Micro Alloyed Steel
- 2. Manufacturer 2 (M2): Patented Microstructure MMFX
- Manufacturer 3 (M3): Combination of Quench and Tempering and Micro Alloying
- 4. Manufacturer 4 (M4): Combination of Quench and Tempering and Micro Alloying

Option 1:95% confidence of achieving YSPO

		Bar Size	β _{ΑCI}	β _{Recom}
	rade 60	3 to 5 Transverse	4.0	5.0*
		3 to 5 Longitudinal	6.0	6.0
		6 to 8	6.0	6.0
<u>ר</u>	9	11	8.0	8.0
.61	Grade 80	3 to 5 Transverse	4.0	5.0*
		3 to 5 Longitudinal	6.0	6.0
		6 to 8	6.0	6.0
ST		11	8.0	8.0
A	Grade 100	3 to 5 Transverse	Not Specified	6.0
		3 to 5 Longitudinal	Not Specified	6.0
		6 to 8	Not Specified	8.0
		9 to 11	Not Specified	9.0
ASTM A706	Grade 60	3 to 5 Transverse	4.0	5.0
		3 to 5 Longitudinal	6.0	6.0
		6 to 8	6.0	6.0
		9 to 11	8.0	8.0
	de 80	3 to 5 Transverse	4.0	5.0
		3 to 5 Longitudinal	6.0	6.0
	jrac	6 to 8	6.0	6.0
	9	9 to 11	8.0	8.0

* these bend ratios result in higher than 5% probabilities of failing the yield stress objective, which is deemed acceptable for A615 ties

Option 2: HSRB match Gr60 bend performance

		Bar Size	β _{ΑCI}	β_{Recom}
	rade 60	3 to 5 Transverse	4.0	4.0
		3 to 5 Longitudinal	6.0	6.0
		6 to 8	6.0	6.0
L L	6	11	8.0	8.0
.61	õ	3 to 5 Transverse	4.0	5.0
▲	Grade 8	3 to 5 Longitudinal	6.0	6.0
		6 to 8	6.0	6.0
ST		11	8.0	8.0
	Grade 100	3 to 5 Transverse	Not Specified	5.0
		3 to 5 Longitudinal	Not Specified	6.0
		6 to 8	Not Specified	8.0
		9 to 11	Not Specified	9.0
ASTM A706	0	3 to 5 Transverse	4.0	4.0
	Grade 6	3 to 5 Longitudinal	6.0	6.0
		6 to 8	6.0	6.0
		9 to 11	8.0	8.0
	je 80	3 to 5 Transverse	4.0	5.0
		3 to 5 Longitudinal	6.0	6.0
	jrac	6 to 8	6.0	6.0
	5	9 to 11	8.0	8.0

Next Steps

- Cold weather bend performance?
- New project investigating bend performance at cold temperatures (Sponsored by CRSI)
- Will revisit bend diameters for HSRB when results are out (~end of 2017)

Monotonic Beam Tests

John Nicholas Hardisty

Jack Moehle

Two test series

Series 1: $\varepsilon_t = 0.034$

Grade 100 Beams: 1GBL100 (1.18) and 1GBH100 (1.26)

Series 1 – Load-Deflection

Series 2 – Explore behavior near lower limits of ε_t

Grade 60

Grade 100

Series 2 – High ρf_y

Failure

REINFORCEMENT LIMITS FOR STRUCTURAL CONCRETE ELEMENTS WITH HIGH-STRENGTH STEEL

Concrete Reinforcing Steel Institute

AISHWARYA Y. PURANAM SANTIAGO PUJOL

Maximum Reinforcement in Beams

What Et is needed in beams with high-strength steel?

Tests of Continuous Beams with conventional and high-strength longitudinal reinforcement f'c= 4500 psi

fy= 60 ksi, 100 ksi, 120 ksi Series 1 Cross-Section: 18 in. x 30 in. Series 2 Cross-Section: 14 in. x 20 in. Designed so that net tensile strain is ~0.005 at concrete strain of 0.003

Tests completed so far

Test results so far

WALLS

High-Strength Steel Bars in RC Walls: Influence of Mechanical Properties of Steel on Deformation Capacity

Principal Investigators

Andrés Lepage Rémy Lequesne

Graduate Students

Mohammad S. Huq Alex Weber-Kamin Shahedreen Ameen

Project Participants

Charles Pankow Foundation (RGA #06-14)

The University of Kansas (Dept. of CEAE)

Concrete Reinforcing Steel Institute (CRSI, M. Mota) CMC - Arizona: J. Selzer NUCOR - Seattle: E. Nissen Harris Rebar - Kansas City: P. Fosnough, M. King, J. Meddings

American Concrete Institute

Advisory Panel Dave Fields, MKA, Seattle Ramón Gilsanz, GMS, New York Dominic Kelly, SGH, Boston Conrad Paulson, WJE, Los Angeles

Grade 100 Steel Bars (No. 6 Bars)

CHARLES PANKOW

Building Innovation through Research

Id.	$f_{m{y}}$ (ksi)	Т/Ү	f'_c (ksi)	ε _{su} (%)
T1	70	1.34	7.2	12.1
T2	108	1.14	7.9	9.0
Т3	99	1.23	7.3	9.2
T4	95	1.38	8.6	8.5

Wall Specimens

Tests Completed T1 and T3 (October 2015) T2 and T4 (June 2016)

Wall Cross Section

KU

Shear vs. Drift Ratio

T1 – 60 ksi

T3 – 100 ksi ld. f_{v} (ksi) ϵ_{su} (%) *f'_c* (ksi) Т T1 70 1.34 7.2 12.1 9.0 T2 108 1.14 7.9 9.2 1.23 7.3 **T**3 **99** 95 1.38 8.6 8.5 Τ4

Shear vs. Drift Ratio

T1 – 60 ksi

<u>T2 – 100 ksi</u>

ld.	$f_{m{y}}$ (ksi)	Τ/Υ	f'_{c} (ksi)	ε _{su} (%)
T1	70	1.34	7.2	12.1
Т2	108	1.14	7.9	9.0
Т3	99	1.23	7.3	9.2
T4	95	1.38	8.6	8.5

Shear vs. Drift Ratio

T1 – 60 ksi

<u>T4 – 100 ksi</u>

Id.	f_{y} (ksi)	Τ/Υ	f'_c (ksi)	ε _{su} (%)
T1	70	1.34	7.2	12.1
T2	108	1.14	7.9	9.0
Т3	99	1.23	7.3	9.2
T4	95	1.38	8.6	8.5

Test Results

T1 – 60 ksi T2 – 100 ksi 2% Drift Ratio

Special attributes of steel bars in T2

- (1) No. 4 bars in T2 had the lowest T/Y ratio of all bars. Measured T/Y was 1.14
- (2) No. 4 bars in T2 had the lowest ε_{su} . Measured ε_{su} was 5.6%
- (3) Sharp edges in deformation pattern of longitudinal bars.(Reported poor performance in low-cycle fatigue tests)
- (4) Strain gauges on No. 4 bars at the wall-base interface.(Potentially creating a weak plane)

CONCLUSIONS

Conclusions

Overall good behavior of concrete members with HSRB

- Some concerning tests that highlight
 - Detailing issues
 - Importance of selecting acceptable bar properties
 - Importance of reliable bar production
- Seems like HSRB will be the future
 - Similar concerns were overcome when moving from Gr40 to Gr60

