350 MISSION

HIGH PERFORMANCE FLAT PLATE POST-TENSIONED DESIGN WITH INNOVATIVE MULTI-STORY CONSTRUCTION METHODOLOGIES

WEBCOR CONCRETE Eric Peterson

San Francisco, California

🚯 🗸 Street View - Jul 2015

9 :

Back to Map

Google

CONT.

BUILDING OVERVIEW 350 MISSION

FRAMING PLAN TYPICAL FLOOR

350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

BUILDING SECTIONS THROUGH CORE

RC Columns 42x42 to 26x26

RC Walls 33 in to 24 in

Slabs PT Roof: 12 in PT Typical: 11 in Ground: 16 in RC Bsmt: 10 in Mat 10 ft

FRAMING SECTION TYPICAL FLOOR

FRAMING SECTION TYPICAL FLOOR

LONG-SPAN FLAT PLATE SLAB DESIGN 350 MISSION

DESIGN CRITERIA DESIGN LOADS

Dead Load (DL) Post Tensioning (PT) Superimposed Dead Load (SDL) Raised Floor, Ceiling, MEP Live Loads (LL) Occupancy Partitions Design Strength Rebar ASTM A615 Gr 60 ASTM A706 Gr 60

CONCEPTUAL DESIGN

	Result : C:/Users/davi	d.shook/Desktop/350 Mis			
-					

STUDIOR - SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

CONCEPTUAL DESIGN

350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

DESIGN CRITERIA **DEFLECTION LIMITS**

Deflection Span Ratios

L/240	(43.5' span)
L/360	(43.5' span)
L/480	(43.5' span)

Partitions Deflection Accommodation Curtain Wall Deflection Accommodation Level 5 Curtain Wall Deflection Accommodation

TABLE 9.5(b) — MAXIMUM PERMISSIBLE COMPUTED DEFLECTIONS

Type of member		Deflection to be considered	Deflection limitation
Flat roofs not supporting or attached to nonstructur likely to be damaged by large deflections	al elements	Immediate deflection due to live load L	ℓ/180 [*]
Floors not supporting or attached to nonstructural likely to be damaged by large deflections	elements	Immediate deflection due to live load L	ℓ/360
Roof or floor construction supporting or attached to elements likely to be damaged by large deflections	nonstructural	That part of the total deflection occurring after attachment of nonstructural elements (sum of the long-term	ℓ/480 [‡]
Roof or floor construction supporting or attached to elements not likely to be damaged by large deflect	nonstructural ons	deflection due to all sustained loads and the immediate deflection due to any additional live load) [†]	ℓ/240 [§]

*Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection, including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber, construction tolerances, and reliability of provisions for drainage.

¹Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.3, but may be reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.

[‡]Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.

SLimit shall not be greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that total deflection minus camber does not exceed limit.

2.2" 1.5" 1.0"

0.75"

0.75"

DESIGN CRITERIA ANALYSIS

Sustained Loads Rupture Strength of Concrete (f_r) f'c (design, for strength) f'c (based on testing, for deflection) Walls & columns above/below modeled Rigid zones over supports 1.0 DL+1.0 PT+1.0 SDL+0.2 LL $4\sqrt{f_c}$ ACI 435 Table 4.1 5,000 psi 7,000 psi

Method 1: Cracked section analysis with long term multiplier Long Term Creep Multiplier (λ_t) 3.5 ACI 435 Table 4.1

Method 2: Cracked section analysis with creep and shrinkage effects using variable Ec Creep Coefficient(C) 2.35 ACI 209R-92

Shrinkage Coefficient (ϵ_{sh})	780x10 ⁻⁶	ACI 209R-92
Design Software – SAFE:	Method 1 & 2	(CSI)
Verification Software – ADAPT Floor:	Method 1	(ADAPT)

DESIGN CRITERIA ANALYSIS

Source	Modulus of rupture, psi	Immediate	Creep λ_c	Shrinkage λ_{ab}	Total λ ,
Sbarounis (1984)	7.5 √f _c '	1.0	2.8	1.2	5.0
Branson (1977)	7.5 √ f ⁷ _c	1.0	2.0	1.0	4.0
Graham and Scanlon (1986b)	$7.5 \sqrt{f_c'} \\ 4 \sqrt{f_c'}$	1.0 1.0	2.0 1.5	2.0 1.0	5.0 3.5
ACI Code	75 JF'	1.0		2.0	3.0

Shrinkage warping deflections can also be determined using the equivalent tension force method outlined in ACI 209R.

Table 41-Multipliers recommended by different authors

The total deflection at any time is obtained by adding immediate deflection due to sustained load, creep deflection due to sustained load, shrinkage warping deflection, and deflection due to the part of the live load that is transient.

Sophisticated finite element models have been developed (ASCE 1982) to account for time-dependent deformations of two-way slabs caused by creep and shrinkage. These models are generally used for research purposes and are considered to be too complex for normal design applications, particularly when the high variability of creep and shrinkage properties is considered. where restraint stresses are likely to have a significant effect on cracking, for example, large slab areas and stiff lateral restraint elements such as structure walls and columns, it is recommended that a reduced modulus of rupture given by $f_r = 4 \sqrt{f_c}'$ psi (0.33 $\sqrt{f_c}$ MPa) be used along with a long-term sustained-load multiplier of 2.5.

Values recommended in ACI 209R for ultimate creep and shrinkage coefficients are $C_{\mu} = 2.35$, and $\varepsilon_{sh\infty} = 780$ x 10⁻⁶, respectively at standard conditions as discussed in Chapters 2 and 3. Sharounis (1984) has suggested that at standard conditions the long-term multipliers be modified if the concrete properties are known, and better estimates of ultimate creep, \overline{C}_{μ} , and shrinkage, $\overline{\epsilon}_{sh\infty}$, are available. Thus,

MATERIAL PERFORMANCE CREEP AND SHRINKAGE

Raised floor and curtain wall installed approximately **90 days** after casting concrete.

Therefore 50% of long-term creep and shrinkage has occurred when curtain wall installed.

SLAB DESIGN MILD REINFORCEMENT

At Walls	Typical	Rho (%)
Bottom Reinf:	#5@12	(0.23%)
Top Reinf :	#7@12	(0.49%)

At Wall Corners

Bottom Reinf :	#5@12	(0.23%)
Top Reinf :	#9@6	(1.51%)

At Mid-Span

Bottom Reinf :	#5@6	(0.47%)
Top Reinf :	#5@18	(0.15%)

At Columns

Bottom Reinf :	#5@6	(0.47%)
Top Reinf :	#5@6	(0.47%)

NO UNIFORM REINFORCEMEMT Mild Quantities: 3.7 psf 350 MISSION – SAN FRANCISCO

SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

D **SLAB DESIGN** 10 20 (**POST-TENSIONING** 1 Tendon per Foot $\frac{1}{2}$ " Diameter tendons 25 Unbonded tendons Fully encapsulated 4--Tendons go through concrete walls and columns (3) PT Quantities: 1.3 psf 25 1 Tendon per Foot 32 (Ψ 350 MISSION - SAN FRANCISCO

32

10

20

SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

EMBODIED CARBON QUANTIFIED

600 truck loads of concrete eliminated

5,400 cubic yards of concrete

SLAB DESIGN ANALYSIS

FRAMING PLAN

REBAR PLAN

PT PLAN

SLAB DESIGN LOADING

LIVE LOAD PLAN

SUPERIMPOSED DEAD PLAN

SLAB DESIGN DEFLECTION

SELF WEIGHT

SUPERIMPOSED DEAD

LIVE LOAD

SLAB DESIGN DEFLECTION

SELF WEIGHT + PT

SERVICE LOADS (ELASTIC)

SERVICE (CRACKED)

SLAB DESIGN DEFLECTION

TOTAL LONG TERM SERVICE – METHOD 1 $\lambda_t = 3.5 (2.5+1)$ $f_r = \sqrt{4}f'c$ 350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

TOTAL LONG TERM SERVICE – METHOD 2 C_u = 2.35 & ϵ_{sh} = 780x10^{-6} f_r = $\sqrt{4}f'c$

SLAB DESIGN DEFLECTION

AFTER NSC WITH LIVE – METHOD 1 $\lambda_t = 3.5 (2.5+1)$ $f_r = \sqrt{4}f'c$ 350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

AFTER NSC WITH LIVE – METHOD 2 C_u = 2.35 & ϵ_{sh} = 780x10^{-6} f_r = $\sqrt{4}f^{*}c$

C

В

D

E

01/2

CAMBER DESIGN SHORING CONSIDERATIONS

350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

CONSTRUCTION METHODS 350 MISSION

SHORING SYSTEM METHOD OF GRADING

STEPS REQUIRED TO OBTAIN SOFFIT PROFILE

Measure deflection of lowest reshored level during placement Measure shortening of formwork system during placement Interpolate values based upon shore location relative to supports Add deflection + formwork shortening to specified camber values As-build deck soffit formwork elevations prior to placement

CAMBER DESIGN TOP SURFACE FINISHING

Target Screed Placement 10-FT On Center

PLACE AND FINISH STRATEGY

- Strike-off was perpendicular to primary camber direction on long runs
- 10-ft increments to minimize effect of corded profile
- Verify screed elevations after deck is loaded / before strike-off
- No pans used for finishing

TOLERANCES TIGHT CONTROL

Tolerance Requirements:

Deviation from elevation ACI 117-10 +/- 3/4" 350 Mission +1/4", -1/8"

Deviation of Cross Thickness ACI 117-10 - 1/4", no + limit 350 Mission -1/8 in., +1/2 in.

SHORING SYSTEM HAND SET

Hand set Pro-Shore

350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

Day 3 – Tendons stressed and shores installed for next floor

Day 30 – Reshores out, mechanical equipment staging

Day 60 – Curtain wall staging

Day 90 – Mostly free of staging

PLACEMENT TOLERANCES AND DEFLECTION PERFORMANCE AS-BUILT SURVEY

SURVEY PROGRAM PLACEMENT ACCURACY

All Locations

	If Placed High	If Placed Low	All Conditions
	(in)	(in)	(abs, in)
Avg	0.25	-0.15	0.22
Std Dev	0.16	0.15	0.17
Max	1.12	-0.96	1.12

+ up | - down

Survey immediately after casting

No. Cambered Pt Surveys:8 pts x 22 floors= 176No. Non-Cambered Pt Surveys:24 pts x 22 floors= 528Total= 704

SURVEY PROGRAM PLACEMENT ACCURACY

Non-Cambered Locations

	If Placed High	If Placed Low	All Conditions
	(in)	(in)	(abs, in)
Avg	0.27	-0.09	0.23
Std Dev	0.15	0.12	0.16
Max	1.12	-0.96	1.12
•1" and	• 1.5" Cambere	ed Locations	
	If Placed High	If Placed Low	All Conditions
	(in)	(in)	(abs, in)
A	0.00	0.21	0.22

	(in)	(in)	(abs, in
Avg	0.22	-0.21	0.22
Std Dev	0.18	0.17	0.18
Max	1.06	-0.80	1.06

Survey immediately after casting

No. Cambered Pt Surveys:8 pts x 22 floors= 176No. Non-Cambered Pt Surveys:24 pts x 22 floors= 528Total= 704

+ up | - down

350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

SURVEY PROGRAM DEFLECTION FROM PLACEMENT

Non-Cambered Locations

	28 Days	60 Days	90 Days
	(in)	(in)	(in)
Avg	0.14	0.2	0.16
Std Dev	0.14	0.13	0.09
Max	1.2	0.6	0.36

• 1" Cambered Locations

	28 Days	60 Days	90 Days
	(in)	(in)	(in)
Avg	0.53	0.64	0.45
Std Dev	0.27	0.33	0.15
Max	1.68	1.44	0.72

Survey at 28, 60 & 90 days after casting No. 28-day Pt Surveys: 24 pts x 22 floors = 528 No. 60-day Pt Surveys: 24 pts x 4 floors = 96 No. 90-day Pt Surveys: 24 pts x 4 floors = 96 Total = 720 + up | - down

350 MISSION – SAN FRANCISCO

SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

SURVEY PROGRAM DEFLECTION FROM PLACEMENT

Non-Cambered Locations

	28 Days	60 Days	90 Days
	(in)	(in)	(in)
Avg	0.14	0.2	0.16
Std Dev	0.14	0.13	0.09
Max	1.2	0.6	0.36

• 1" Cambered Locations

	28 Days	60 Days	90 Days
	(in)	(in)	(in)
Avg	0.53	0.64	0.45
Std Dev	0.27	0.33	0.15
Max	1.68	1.44	0.72

Survey at 28, 60 & 90 days after casting No. 28-day Pt Surveys: 24 pts x 22 floors = 528 No. 60-day Pt Surveys: 24 pts x 4 floors = 96

No. 90-day Pt Surveys: 24 pts x 4 floors = 96 Total = 720

350 MISSION - SAN FRANCISCO

SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

+ up | - down

SURVEY PROGRAM DEFLECTION FROM PLACEMENT

• 1.5" Cambered Locations

	28 Days	60 Days	90 Days
	(in)	(in)	(in)
Avg	1.05	1.08	0.87
Std Dev	0.28	0.42	0.11
Max	1.56	1.80	0.84

Survey at 28, 60 & 90 days after casting No. 28-day Pt Surveys: 24 pts x 22 floors = 528 No. 60-day Pt Surveys: 24 pts x 4 floors = 96 No. 90-day Pt Surveys: 24 pts x 4 floors = 96 Total = 720 + up | - down

SURVEY PROGRAM DIFFERENCE FROM TARGET

Non-Cam	bered Locatio	ns		
	As-Cast	28 Days	60 Days	90 Days
	(in)	(in)	(in)	(in)
Avg	0.23	0.25	0.28	0.34
Std Dev	0.16	0.18	0.21	0.23
Max	1.12	1.04	1.2	0.96
1" Cambe	ered Locations	5		
	As-Cast	28 Days	60 Days	90 Days
	(In)	(in)	(in)	(in)
Avg	0.91	0.41	0.24	0.30
Std Dev	0.28	0.29	0.19	0.20
Max	1.56	1.20	0.84	0.72
Survey at 2	28, 60 & 90 da	vs after casting		+ up - dov
No. 28-day	/ Pt Surveys: 2	24 pts x 22 floors	= 528	
No. 60-day	/ Pt Surveys: 2	24 pts x 4 floors	= 96	
No. 90-day	/ Pt Surveys: 2	24 pts x 4 floors	= 96	
Total			= 720	

SURVEY PROGRAM DIFFERENCE FROM TARGET

• 1.5" Cambered Locations

	As-Cast	28 Davs			
	(in)	(in)	(in)	(in)	
Avg	1.44	0.39	0.48	0.49	
Std Dev	0.24	0.31	0.35	0.31	
Max	1.80	0.88	0.80	0.84	

Survey at 28, 60 & 90 days after casting No. 28-day Pt Surveys: 24 pts x 22 floors = 528 No. 60-day Pt Surveys: 24 pts x 4 floors = 96 No. 90-day Pt Surveys: 24 pts x 4 floors = 96 Total = 720

350 MISSION – SAN FRANCISCO SKIDMORE, OWINGS & MERRILL LLP + WEBCOR CONCRETE

WEBCOR CONCRETE Eric Peterson

David Shook