

Precipice

- Need to understand how "cold weather" impacts the residential concrete foundation wall industry.
- Existing codes Protective measures must be taken;
 Empirical evidence they may not be necessary or even helpful.
- Variations in "local" mixture performance mandates a need for method of validation of in place strengths.
- What constitutes cold weather is even debatable. In other words...

The Research Program

- Phase I: Laboratory Chiller Cylinders
 - 36 mix designs
 - 44 maturity curves
 - over 650 cylinders cast and tested
 - Wide range of mixes from very "lean" to very "rich"
 - ♦ Two different temperatures, 30°F and 50°F
- ♦ Phase II: Field Mock-Up Walls
 - 6 selected mix designs
 - ♦ 24-hour blanketed vs. un-blanketed
- ♦ Phase III: Laboratory Petrographic Studies

Research Methodology

- Designed to a "worst-case" scenario for lab cylinders (Phase I) and received "worst-case" scenario for field walls (Phase II).
- Testing represented a significant deviation from standard conditions (no 70° moist cure).
- All 44 lab maturity curves were checked and entered into the maturity testing software.
- All 12 field maturity curves were also checked by maturity.

nneu3 FC	m uchVh	LAND, OH	004)						LA	T=41.4N LC	Ivo.10 mm	
		ACTUAL			NORMAL	ERATURE	DATA	_		TATION		
_	н	LO	AVG	н	LO	AVG	DEPT	AMNT	SNOW	SNCVR	HDD	
1	34	31	33	34	21	28	5	0.14	trace	0	32 32	Weat
2	31	27	29	33	20	27	3	0.15	1.5	0	36	(D
3	30	25	28	33	20	27	1	0.05	0.6	1	37	0.1
4	28	25	27	33	20	27	0	0.05	0.6	2	38	
5	31	23	27	33	20	27	1	0.01	0.1	2	38	
6	30	20	25	33	20	27	-2	0.41	5	3	40	
7	35	10	23	33	19	26	-4	0	0	5	42	
8	45	32	39	33	19	26	13	0	0	3	26	
9	44	33	39	33	19	26	13	trace	trace	0	26	
10	33	20	27	33	19	26	- 1	0.13	2	0	38	-
11	20	17	19	33	19	26	-8	0.01	0.2	1	46	
12	27	16	22	33	19	26	-5	trace	trace	1	43	—
13	27	19	23	32	19	26	-3	0.01	0.1	0	42)eta
14	22	18	20	32	19	26	-6	0.02	0.3	0	45	
15	20	10	15	32	19	26	-11	0.08	1.6	1	50	
16	20	12	16	32	18	25	ą	0.04	0.9	2	49	
17	22	6	14	32	18	25	-11	0.06	1.8	2	51	eta
18	22	4	13	32	18	25	-12	trace	0.4	2	52	=
19	24	14	19	32	18	25	-6	0.05	- 1	2	46	
20	26	15	21	32	18	25	-5	0.06	1.1	3	44	
21	19	- 6	13	32	18	25	-13	trace	trace	2	52	,
22	14	5	10	32	18	25	-16	0.02	0.6	2	55	
23	18	4	- 11	32	18	25	-14	0.06	2.1	2	54	I - 6
24	20	14	17	32	18	25	-8	0.02	0.5	3	48	
25	25	15	20	32	18	25	-5	trace	trace	3	45	
26	27 15	10 -4	19 6	33	18	26 26	-7 -20	0.3 trace	6.6 trace	7	46 59	
27	15 29	14	22	33	18	26	-20	0.12	1.3	6	43	
28	29	19	24	33	19	26	-2	0.12	1.3	9	41	
30	30	5	18	33	19	26	-9	trace	trace	8	47	
31	39	12	26	33	19	26	-4	0	0.000	8	39	
٠,				LS FOR				_	Ť	Ť		
IGHEST	TEMPERA	TURE	45		TOTAL PR	FCIP		1.98		1	_	1/2003
OWEST TEMPERATURE		7	TOTAL SNOWFALL			—	30.3	—	1			
			21.2		NORMAL			2.48				(1)
		-4.5			MAL PRE	CIP	80				\sim	

Mix Desc.	Data Set	1 Day (~30 hrs.)	2 Day (~48 hrs.)	3 Day (~73 hrs.)	7 Day (~170 hrs.)	28 Day (~702 hrs.)	180 Day
5-sack	Uncov.	330	560	1040	1740	3410	5530
Type I	Cov. §	340	600	1060	1790*	3290*	5765
2% CaCl	Matur.	230	500	810	1450	-	-
5.5-sack	Uncov.	410	600	1020	1650	3460	5695
Type I	Cov. §	400	590	1000	1815*	3520*	6250
20/ CoCl	Matur.	280	580	940	1690	-	-
6-sack	Uncov.	510	700		6955		
Type I	Cov. §	520	740	1280	2005*	3605*	-
2% CaCl	Matur.	560	950	1350	2100	-	-
5-sack	Uncov.	500	840	1350	1750	3150	5750
Type III		870	1470	2035*	3270*	5450	
1% CaCl	Matur.	450	1050	1560	2070	-	-
5 5-sack	Uncov.	990	1320	1840	2220	4140	5550
Type III	Cov. §	990	1370	2110	2710*	4180*	5750
1% CaCl	Matur.	550	1530	2280	2990	-	-
6-sack Type III 1% CaCl	Uncov.	1400	1870	2500	3030	5250	6500
	Cov. §	1550	1970	2620	3360*	4965*	6850
	Matur.	1180	2060	2760	3820	-	-

	100	Petrograp	hic Exami	nation Su	mmary		1/4		-
	,	Microfracturia	ng 1,2		Effect on Ceme	ent Paste 13	//		7
Panel/Mix ID	Severe	Moderate	Mild	Severe	Moderate	Mild	1		
3	И"	1-1/2"	Entire Thickness	1/16**	1-1/4"	N/A			ì
3B	N/A	N/A	N/A	N/A	N/A	1/16"			
8	1/2"	1-1/2"	2-1/2"	1/32"	1-1/4"	N/A		i i	٠
8B	N/A	N/A	N/A	N/A	N/A	Superficial			ı
13	1/4"	1-1/8"	1-3/4"	1/32"	34"	N/A			┰
24	3/4"	1-3/4"	2-3/4"	1/32"	3/4"	N/A			à
24B	N/A	N/A	N/A	N/A	N/A	1/8** 4			
29	5/8**	1"	1-1/2"	1/32"	3/8"	N/A			
29B	N/A	N/A	N/A	N/A	N/A	Superficial		~	×
34	1/8"	5/16 ^m	1-1/4"	1/32™	3/16**	N/A		Ψ 4	_
34B	N/A	N/A	1/32"	N/A	N/A	1/64**			7
2 S	evere, moder f microfracts	ares.	ers to the petrogn	of the cementiti	ive assessment of t	d characteristics of		F	CITOSTADOV

Conclusions for Residential Walls

- ♦ Concrete temperature <u>not</u> ambient temperature.
- Hydration does not stop at 40°F...strength gain continues well below freezing.
- Maturity prediction <u>can</u> be used to accurately track inplace strengths.
- 500 psi early strength before freezing is reasonable and can be readily achieved.
- Current restrictive codes should be relaxed through new techniques and professional practice.
- Codes should accommodate better quality control and maturity testing.

Conclusions for Residential Contractors

- ♦ No single mix answer.
- Selection of a few mix designs supported by maturity testing to confirm local performance.
- ♦ Pour earlier in the day solar gain on concrete mass
- ♦ Type III cements over Type I for performance
- Economical strength gain from use of calcium chloride.
- ♦ Slower strength gain in cold weather use caution when removing support.

