Seismic Repairing of a Seismically Damaged Bridge Column with Low-Grade GFRP Material

Mosharef Hossain, MASc,

Structural Engineer-in-Training, Stantec, Victoria, BC

M. Shahria Alam, PhD, PEng

The University of British Columbia, Okanagan

BACKGROUND

Interstates 5 and 14 San Fernando earthquake, 1971

Shizunai Bridge Urakawa-oki Earthquake, 1982

Cypress viaduct Loma Prieta Earthquake, 1989

Fukae Viaduct Kobe Earthquake, 1995

Lack of lateral reinforcement

BRIDGE COLUMN RETROFITTING TECHNIQUES

AVAILABLE RETROFITTING TECHNIQUES

Concrete Jacketing

External Pre-stressing

FRP Jacketing

EFFECT OF GFRP CONFINEMENT ON THE COMPRESSIVE STRENGTH OF CONCRETE

FRP COMPOSITES

- Carbon Fiber Reinforced Polymer (CFRP)
- Glass Fiber Reinforced Polymer (GFRP)
- Aramid Fiber Reinforced Polymer (AFRP)

Basalt Fiber Reinforced Polymer (BFRP)

Tensile Strength, Corrosion resistant

Available and reliably serve the purpose

Type of FRP	Tensile Strength (MPa)	Elastic Modulus (GPa)	Strain at Break (%)
CFRP	1720-3690	120-580	0.5-1.9
GFRP	480-1600	35-51	1.2-3.1
AFRP	1720-2540	41-125	1.9-4.4
BFRP	1035-1650	45-59	1.6-3.0

+ Polyester Resin (epoxy)

Cheaper

+ Methyl Ethyl Ketone Peroxide (catalyst)

Fig: Bi-directional Woven Roving Glass Fibers

FRP CONFINEMENT MECHANISM

FRP wrapped cylinder

Overlapping on final layer Free body diagram of FRP confined concrete

Tri-axial stress stage of concrete

Resulting strength (Mander et al. 1988)

EXPERIMENTAL INVESTIGATION ON MATERIALS

Applied Laboratory for Advanced Materials & Structures

PROPERTIES OF GFRP

Properties	Value
Tensile strength (MPa)	275-290
Young's modulus of elasticity (GPa)	13.5-18
Fracture strain (%)	2.2-2.9
Strength of epoxy (MPa)	50
Optimum overlap length (mm)	150

Table - Properties of GFRP obtained from tests

/\L-AMS

APPLICATION OF GFRP ON TEST SPECIMENS

Control cylinders

GFRP confined cylinders

First layer

Last layer

EFFECT OF GFRP CONFINEMENT

Stress-strain curves for Type 22 and Type 32 cylinders

* Average of 3 specimens

FAILURE MODE

Control Specimen

1 layer of GFRP confinement

2 layers of GFRP confinement

3 layers of GFRP confinement

SUMMARY

- GFRP confinement can significantly improve compressive strength and strain capacity of low strength concrete.
- Multi-layer of GFRP (thick) show better mechanical properties than a single layer.
- The Number of layer = Compression carrying capacity + sudden blast type failure X
- Two layer of GFRP is considered to be the optimum confinement as it improves the compressive strength by 101% and shows gradual failure of fibers.

CYCLIC PERFORMANCE OF RC CIRCULAR BRIDGE PIERS REPAIRED AND RETROFITTED WITH GFRP

DESIGN AND GEOMETRY OF BRIDGE PIER

DESIGN AND GEOMETRY OF BRIDGE PIER

Description of properties	Prototype	Test Specimens
Diameter (mm)	900	300
Effective height (m)	5.2	1.73
Clear cover (mm)	60	20
Longitudinal reinforcement ratio (%)	2.52	2.55
Volumetric ratio of lateral reinforcement (%)	0.173	0.178
Tie spacing (mm)	15M @ 300	6mm @ 75
Axial Load, $P/f'_{c}A_{g}(\%)$	10	10
Yield Strength of Longitudinal reinforcement (MPa)	450	450
Yield Strength of transverse reinforcement (MPa)	400	400
Compressive strength of concrete (MPa)	35	35
Thickness of GFRP layer (mm)		1.55

Table : Geometric comparison of prototype and test specimens

Applied Laboratory for Advanced Materials & Structures

MATERIAL PROPERTIES

Applied Laboratory for Advanced Materials & Structures

TEST SETUP

Setup for bridge pier test under lateral cyclic load

Applied Laboratory for Advanced Materials & Structures

UBC

TEST SETUP

TEST SETUP

GFRP retrofitted pier under lateral cyclic test

Repairing and Retrofitting Method

Vertical Support and Axial Load Removal Formwork for pouring repair concrete

Repaired pier

Repaired pier with GFRP confinement

CYCLIC RESPONSE

	Maximum Force (kN)	Maximum Drift (%)		
eficient	62.3	4		
lepaired	>78 1 25%	>6.9 🕇 73%		
etrofitted	>79 👔 27%	>6.9 🕇 73%		

STRAIN RESPONSE

Applied Laboratory for Advanced Materials & Structures

1 AMS

MOMENT-CURVATURE RESPONSE

$$\varphi = \frac{\varepsilon_c}{NA} = \frac{\varepsilon_t}{d - NA} = \frac{|\varepsilon_t| + |\varepsilon_c|}{d}$$

 $M = F * L_e$

Moment-curvature relationship obtained from test

Measurement of curvature (ϕ) (Ibrahim et al. 2016)

DUCTILITY ANALYSIS

Table: Ductility of Piers obtained from test results

Specimen	Yielding				Ultimate			Displacement	Curvature	
type	Force	Displacement	Moment	Curvature	Force	Displacement	Moment	Curvature	ductility	ductility
	(kN)	(mm)	(kN-m)	(1/mm)	(kN)	(mm)	(kN-m)	(1/mm)		
Deficient	38.9	19.6	64.38	3.52x10 ⁻⁵	62.3	69.3	103.11	9.64x10 ⁻⁵	3.54	2.74
Repaired	43.13	25.2	71.38	5.25x10 ⁻⁵	77.9	120	127.6	2.9x10 ⁻⁴	>4.76	>5.52
Retrofitted	39.1	19.2	64.71	3.44x10 ⁻⁵	79	120	130.75	2.66x10 ⁻⁴	>6.25	>7.73

ENERGY DISSIPATION AND RESIDUAL DRIFT

FAILURE MODE

Deficient Pier

Repaired Pier

Retrofitted Pier

SUMMARY

- For the seismically damaged RC circular piers, repairing and retrofitting technique using passive confinement demonstrated the purpose of restoring strength and ductility of piers.
- The deficient pier once confined with GFRP jacketing showed increased lateral capacity (27%) and ductility (73%).
- From the experimental results it was found that, initial stiffness doesn't change for passive confinement techniques like GFRP jacketing.
- Except some horizontal distortions, GFRP repaired and retrofitted pier didn't show any significant damage up to the applied drift in the test.
- Damaged column repaired and strengthened with GFRP can perform similar to a retrofitted column under constant axial load and cyclic lateral load.

Thanks for your attention

Acknowledgements

