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1 Introduction 

The rate of production of concrete exceeds 3 tons per person per year, which makes it one of the 

most used resource on the planet, second only to water (Gagg, 2014). The environmental impact 

of the production of ordinary Portland cement (OPC) is raising concerns due to the important CO2 

emissions caused by the clinker calcination (Levi et al., 2020). As a result, the interest of the 

scientific community for eco-friendly alternatives is growing exponentially, with one of the most 

promising materials being geopolymers (Davidovits, 1994; P. Duxson et al., 2007a; Wu et al., 

2019). Geopolymers are a semi-crystalline to amorphous three-dimensional material obtained 

from the reaction of an aluminosilicate source with an alkaline solution (generally NaOH or KOH) 

(Davidovits, 2015; J. S.J. van Deventer et al., 2007). They were first proposed by the French 

chemist Joseph Davidovits in 1972 as inorganic polymers for heat resistance applications 

(Davidovits, 2015). They later found various uses as ceramics, fiber composites, resins and cement 

materials (Davidovits, 2015). In this work, the focus will remain on geopolymer binders for 

concrete.  

Many literature reviews on geopolymers have been published in the last few years, notably on the 

parameters affecting their properties (Elie et al., 2021; Farhan et al., 2020; Part et al., 2015), their 

microstructure (Ng et al., 2018), selected precursors (Liew et al., 2016; Mehta & Siddique, 2016; 

Zhuang et al., 2016), their environmental impact (Y. H. M. Amran et al., 2020; Habert et al., 2011; 

Passuello et al., 2017), their durability (M. Amran et al., 2021; Chen et al., 2021) and mix-design 

approaches (Xie et al., 2020).  More general work on the state of the art of geopolymer science 

and its potential as an alternative for OPC has also been conducted (Duxson et al., 2007a; Provis 

& Bernal, 2014b; Singh & Middendorf, 2020; van Deventer et al., 2012).  

The goal of this literature review will be to provide an overview of a few key concepts for the 

understanding of geopolymer science, as well as the challenges related to raw sources hindering 

the large-scale industrialization of this material.  

1.1 Rationale for geopolymer use as a construction material 

The competitiveness of geopolymers as a binder for concrete is based on its potential to convert 

industrial waste and other silica and aluminum-rich raw materials into eco-friendly, chemically 

durable and mechanically performant material (Amran et al., 2020; Chen et al., 2021; Duxson et 
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al., 2007; Lee & van Deventer, 2002). According to a Life cycle assessment conducted by Bajpai 

et al. (2020), fly-ash based geopolymers offer a similar performance to OPC in terms of 

compressive strength, while having a lower environmental impact. However, it has been 

demonstrated that this success, both on the mechanical and environmental front, rely on several 

factors related to the mix design and the choices of precursor and alkaline solution, with respect 

notably to the source location (Habert et al., 2011; Hu et al., 2021; McLellan et al., 2011). As for 

the durability of geopolymer materials, the short track-record of geopolymers on the field does not 

allow for strong conclusions, but according to laboratory testing, their performance is similar or 

even superior to Portland cements’ (Chen et al., 2021; Fernández-Jiménez & Palomo, 2009). 

Furthermore, it has been suggested that ancient concrete’s durability could be linked to the 

synchronous formation of calcium-silicate hydrates (CSH) with alkaline aluminosilicate gels 

typical of geopolymers (Glukhovsky, 1994; Yip & Van Deventer, 2003). The investigation of 

archaeological analogues to modern geopolymer concretes (GPC) was conducted by several 

researchers in order to gain insight on the durability of GPC (Davidovits, 2015; Glukhovsky, 1994; 

Malinowski, 1988). Strong similarities in nuclear magnetic resonance (NMR) data from certain 

Roman cement artifacts would suggest that the reaction products are not entirely comprised of 

lime carbonation products, but would also include aluminosilicate structures resulting from the 

chemical reaction between calcinated clay and volcanic ash (Davidovits & Davidovits, 1999). 

With the disintegration of Portland-based concrete infrastructures causing economic and 

ecological concerns, the durability of concrete becomes paramount (Pacheco-Torgal et al., 2008). 

The findings depicted earlier, along with the promising resistance to aggressive environments seen 

in laboratory settings, are thus another argument for geopolymer use as an alternative construction 

material to OPC.  

1.2 More than a toponymic debate: Alkali-activated vs geopolymer 

The durability of geopolymers is strongly influenced by its calcium content which is also a central 

factor in its characterization (Wardhono et al., 2017).  

Depending on the paper, the terms “alkali-activated material”, “geopolymer”, “inorganic 

polymer”, or even the less common “geocement”, “mineral polymer” and a variety of other names 

are used alternatively to describe similar materials (Bernal & Provis, 2014). This issue might lead 

to researchers missing key papers to their topic due to different terminologies and keywords. More 
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importantly, the absence of a commonly accepted toponomy leads to confusion between two 

materials: alkali-activated materials and geopolymers. Joseph Davidovits has been defending for 

many years the restriction of the term “geopolymer” to stable, polymeric materials which can be 

identified through NMR testing (Davidovits, 2018). Furthermore, the use of N-A-S-H (sodium-

aluminum-silicate-hydrate) and K-A-S-H (potassium-aluminum-silicate-hydrate) gel 

terminologies to describe the reaction products are still argued against by Davidovits, due to the 

role of water in geopolymers (Davidovits, 2018). As literature is identifying little water chemically 

bounded in geopolymer gels, the term N-A-S-H for geopolymers might be further criticized, as 

they are implying an hydrate-dominant microstructure (Liu et al., 2016; Park & Pour-Ghaz, 2018; 

White et al., 2010). A more chemically accurate term might be the “N-A-S-(H)” proposed by 

Provis & Bernal (2014), in which the parenthesis indicates that water is not a significant structural 

component of the gel. The presence of CSH with significant aluminum incorporation seems 

however to justify the use of “C-A-S-H” when referring to high calcium content aluminosilicates 

materials (Ismail et al., 2014).  

Important differences in gel composition and microstructure are linked with calcium inclusion and 

can cause the decrease of resistance to chemical attacks (Dombrowski et al., 2007; Ismail et al., 

2014; Wardhono et al., 2017; Yip & Van Deventer, 2003). To allow for the distinction of 

geopolymer consisting of a three-dimensional aluminosilicate gel with alkali-activated materials 

where a hybrid structure of CSH and aluminosilicate gel can be identified, in numerous works, the 

term “geopolymer” has been restricted to low-calcium (< 10%) alkali-activated materials (AAM) 

(Duxson et al., 2005; Garcia-Lodeiro et al., 2011; Ismail et al., 2014; Singh & Middendorf, 2020). 

In RILEM’S Alkali-Activated state of the art report published in 2014, geopolymers are thus 

defined as a subset of AAMs, with Davidovits’ polymeric structure described as a “highly 

coordinated […] pseudo-zeolitic” structure (Provis, 2014).  

The question of the belonging of geopolymers in the alkali-activated group will not be addressed 

in this work, and the terminology of the RILEM report (2014) will be followed, with all alkali-

activated materials of low calcium content referred to as geopolymers. However, it is believed that 

a commonly agreed upon testing to identify geopolymers based on their microstructure should be 

the subject of further discussion in the scientific community.  
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2 Geopolymerization  

2.1 Models for geopolymerization 

The process of formation of geopolymers has been the subject of numerous works over the years 

and remains to this day a challenge for researchers. Typical methods of analysis are challenged, 

especially as the complex multistep process involves amorphous raw materials forming mainly 

amorphous gel phases (Provis et al., 2015; Zhang et al., 2012). However, with the development of 

characterization techniques, calorimetric, rheological, spectroscopic and diffractometric studies 

have been performed successfully and improved the understanding of geopolymerization (Provis 

et al., 2015). Most models developed agree on three main steps: a dissolution step, where silica 

and alumina monomers from the raw precursors are released in the system, a reorganization step, 

in which aluminosilicate oligomers form various metastable phases and finally, a polymerization 

step where final hardening will take place (Duxson et al., 2007; Favier et al., 2015; Provis & van 

Deventer, 2007).  

To the knowledge of the author, the first theoretical model was proposed by Davidovits (1988). 

This model was based on the known mechanisms of zeolite formation where alkali aluminosilicate 

species polymerize in basic solutions (Davidovits, 2015). Hypothetical steps of geopolymerization 

were proposed. The process involved the evolution of molecular structure from monomers to 

increasingly complex oligomers, and ultimately, from those oligomers, the formation of a complete 

three-dimensional polymeric network (Davidovits, 1988). The existence of soluble aluminosilicate 

oligomers such as the ones proposed were later on confirmed by studies from Harris et al. (1996) 

and North & Swaddle (2000).  

A few years later, a second model was proposed by Rahier et al. (1996a). The mechanism of 

geopolymer formation was modelled by the change in composition of an aluminosilicate glass 

made of metakaolin and sodium silicate. In a first study, the mechanical resistance, short-range 

(molecular scale) and long-range (distances larger than 1 nm) order, as well as the evolution of 

heat flow during the formation of the glass were investigated (Rahier et al., 1996a). The chemical 

reaction found was later generalized. 

Equation 1: Geopolymerization chemical equation (Rahier et al., 1997) 
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In this equation, R represent the cation from the alkaline solution (Na or K), y is the ratio of SiO2 

to Al2O3 and z is the amount of water bound in the final polymeric network (Rahier et al., 1997). 

Further work was then accomplished regarding the impact of rheological behavior, of silicate 

solution composition and of particle size on the final aluminosilicate glass properties (Rahier et 

al., 1996b, 1997, 2003). A two-step process for geopolymerization was also proposed. The authors 

first observed the disintegration of metakaolin grains, followed by a recombination of the products 

of this first reaction with sodium silicate to form the final inorganic polymer (Rahier et al., 2003). 

 

Rahier’s work could only identify the two steps depicted due to the limits of the sole use of 

calorimetric and rheological techniques. To improve furthermore the understanding of the 

geopolymerization process, diffractometric techniques started generating interest as an additional 

method for investigating the first steps of reaction (Olanrewaju, 2002; Provis & van Deventer, 

2007b, 2007a). Similarly to previous models, a mechanistic approach was adopted by Provis et al. 

(2005). However, since more attention was given to the early kinetics (dissolution and 

reorganization steps), this new model was based on the process proposed by Faimon et al. (1996) 

for the weathering of aluminosilicates in alkaline environment (Provis et al., 2005).  

As can be seen from Figure 1, both the presence of gel and zeolitic phases in the final geopolymer 

matrix were explained through this process. The order observed on a nanoscale by the early work 
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of Rahier et al. (1996a) was found to be caused by the presence of zeolites “nuclei” around which 

larger zeolite phases might crystallize over time (Provis et al., 2005; Provis & van Deventer, 

2007c).  

 

The model on the left corresponds to simplified representation of this geopolymerization process 

(Provis et al., 2005; Provis & van Deventer, 2007b, 2007c). Aluminosilicate monomers are 

assumed to be released in solution and to form various oligomers until the formation of a first Al-

rich gel (“Gel 1”) (Duxson et al., 2007b). The increase in silica availability over time would allow 

for partial substitution of Al by Si in “Gel 1”, which would result in the formation of a Si-rich “Gel 

2” (Favier et al., 2015). The reorganization of “Gel 1” into “Gel 2” was challenged a few years 

ago after an NMR study on the interstitial phases revealed that direct polymerization of “Gel 1” 

might be more plausible (Favier et al., 2015). According to the authors, the evolution of “Gel 1” 

and oligomers in solution into “Gel 2” would be the result of  a major precipitation of 

aluminosilicate species rather than the single reorganization of “Gel 1” (Favier et al., 2015). Some 

degree of reorganization could however be possible in the polymerization phase.  As a matter of 

fact, it was found that the polymerization step was associated with an exothermic peak which may 

be due to more cross-linking in the final amorphous aluminosilicate gel and thus reorganization of 

this final gel into a more stable structure (Z. Zhang et al., 2012).  
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The impact of several factors on the geopolymerization process were better understood through 

this model, but no precise quantification of the reaction extent was yet achieved (Duxson et al., 

2007b; Zhang et al., 2012). Insight on this topic was gained a few years later with studies conducted 

by Zhang et al. (2012, 2013). Indeed, the representation of metakaolin-based geopolymer 

structures through zeolites of the analcime family allowed for the estimation of the thermodynamic 

parameters of the final amorphous and zeolitic phases (G, Z: Figure 1) (Z. Zhang et al., 2012). The 

geopolymerization process could thus be simplified into a single equation from which the 

theoretical maximum heat release could be computed. Through calorimetric testing, it is now 

possible to estimate the reaction extent by comparing the experimental heat release at chosen 

moments in time with the theoretical maximum.  

3 Precursors 

The term precursor has been used in geopolymer’s literature to describe raw aluminosilicate 

sources which will effectively dissolve in an alkaline medium to form the 3-dimensionnal 

polymeric gel. Their careful examination is of great importance for geopolymer science. The 

variability of raw sources, especially for waste-based geopolymers, and the large impact of 

multiple physicochemical factors greatly limit the predictability that can be attained in mix-designs 

(Xie et al., 2020). In this section, an overview of the main findings related to precursors reactivity 

and physicochemical characteristics will be given. The purpose will remain on highlighting the 

most critical factors for the following common precursors: metakaolin, fly ash and ground 

granulated blast furnace slag. 

3.1 Reactivity 

The development of a simple, yet reliable method for quantifying the reactive oxide amounts from 

the raw sources is still a topic of ongoing research (Ko et al., 2014; Sanalkumar et al., 2019). Even 

though no general agreement has been reached, various techniques have been proposed. One of 

the most efficient among them is the dissolution of aluminosilicate precursors in 1% hydrogen 

fluoride (HF) (Fernández-Jimenez et al., 2006; Ruiz-Santaquiteria et al., 2011). However, the 

health and safety issues related to the manipulation of HF limits its applicability (Ko et al., 2014).  

Attempts to transfer this methodology to other acid (e.g. HCL) and basic (e.g. NaOH) solutions 

have been done and found some degree of success (Buchwald et al., 2009; Sanalkumar et al., 2019; 
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Xu & Van Deventer, 2000). XRF and XRD analysis to quantify amorphous/reactive content have 

also been conducted in numerous works as a sole method or to compare the results of another novel 

technique (Buruberri et al., 2019; Sanalkumar et al., 2019; Williams & Van Riessen, 2010). 

Reactivity techniques based on the final gel composition rather than precursors composition have 

also been developed. In this regard, Rietveld X-ray powder diffraction and NMR have proven to 

be effective but can be technical and expensive (Fernández-Jimenez et al., 2006; Gao et al., 2017; 

Vogt et al., 2019). Furthermore, quantification of reactive content by NMR may be complexified 

by the overlap between resonances of some precursors and their reaction products (Gao et al., 

2017). 

Future work should be oriented toward the inclusion of calcium addition and activator 

characteristics as factors to consider in reactivity testing. A methodology based on the 

mineralogical composition of the raw sources and accounting for molarity and composition of the 

activator solution might present potential in this regard (Xie et al., 2020).  

3.2 Physicochemical characteristics 

As can be deduced from the broad definition given earlier for a “suitable” precursor, a large family 

of materials of varying mineralogy, physical and chemical characteristics is embedded in the term.  

3.2.1 Metakaolin 

Metakaolin (MK) is generated by the calcination of kaolinitic clays at temperatures varying 

between 600 and 900°C (Liew et al., 2016). In the family of calcinated clays, metakaolin 

geopolymers are undoubtedly the most common ones, but studies have been conducted on less 

reactive clays and promising results have been obtained in this area (Buchwald et al., 2009; Khalifa 

et al., 2020; Seiffarth et al., 2013). Similarly to other clay-based geopolymers, properties of MK 

geopolymers are highly dependent on the pre-treatment of the initial clay. To increase clays’ 

reactivity, dehydroxylation is achieved by mechanical, chemical or heat treatment (Liew et al., 

2016). Heat treatment (aka calcination) is the most efficient among those techniques. In the case 

of metakaolin, it allows for a large fraction of the kaolinite crystalline content to be converted into 

pozzolanic amorphous phases (Liew et al., 2016). 

Metakaolin-based geopolymers have been extensively used as a simpler model for the 

geopolymerisation process (Liew et al., 2016; Provis et al., 2009) as well as a very efficient 

material for toxic waste encapsulation (Cheng et al., 2012; Davidovits, 2015). However, 
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metakaolin particles have a large surface area and plate-like shape that typically leads to high water 

demand and porosity of the geopolymer system (Li et al., 2010; Provis et al., 2010). Those physical 

characteristics significantly limit their applicability as a single precursor.  

3.2.2 Fly ash 

During the combustion of coal, fly ash, a fine particulate residue from the coal, is produced and 

retained by the power plant (Keyte, 2009). They typically resemble small and spherical glass 

particles (Duxson, 2009). Therefore, fly-ash based geopolymer have less viscosity in the paste, 

which allows for the design of geopolymers with lower water to binder ratio and better pore 

refinement (Duxson & Provis, 2008; Provis et al., 2010). Fly ash-based concrete have shown great 

mechanical performance, as well as excellent chemical resistance. Though fly ash is commonly 

used in Portland concrete, its inherent variability may raise challenges in the mix-design of 

geopolymers (Rangan, 2009; Zhuang et al., 2016). […] 

Furthermore, the glassy phase of fly ash particles causes some proportion of the aluminum they 

contain to be in crystalline phase. As a result, the amount of reactive aluminum is limited, and the 

formation of the geopolymer matrix can be strongly affected (Fernández-Jimenez et al., 2006). 

Their reactivity is also lower than metakaolin’s, which typically raises the need for curing if no 

calcium is added as an accelerating additive (Chithiraputhiran & Neithalath, 2013; 

Hajimohammadi & van Deventer, 2016). 

3.2.3 Ground granulated blast furnace slag  

Ground granulated blast furnace slag (GGBFS) is a calcium-rich by-product of the iron industry 

(Duxson, 2009). Its composition can be mainly described with the CaO-MgO-Al2O3-SiO2 system, 

with some impurities depending on the iron ore (Bernal et al., 2014). The high amorphous content 

of this precursor and its composition leads to the formation of strong cross-linked and non cross-

linked tobermorite-like structures (Myers et al., 2013; Puertas et al., 2011; Shi, 2003). Low to 

medium amounts of GGBFS can be used as a precursor for geopolymerization due to the co-

existence of C-A-S-H and N-A-S-(H) phases (Garcia-Lodeiro et al., 2011; Yip & Van Deventer, 

2003). Moreover, their addition to the geopolymer system accelerates setting time (Zhu et al., 

2021), improves compressive strength and other precursors’ reactivity (Samson et al., 2017; Zhu 

et al., 2021), and decreases of porosity due to better water binding (John et al., 2021; Zhang et al., 

2020). 
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3.2.4 Blended mixes 

As demonstrated in the present discussion, raw aluminosilicate source for geopolymer formation 

differ greatly and can present limitations. To answer the issues raised by single precursors, many 

authors have successfully studied blended systems (Bernal et al., 2011; Buchwald et al., 2007; 

Samson et al., 2017; Xu & Van Deventer, 2002; Yang et al., 2017; Z. Zhang et al., 2014). 

Promising results have been found in this area, especially regarding intermediate calcium system 

(Palomo et al., 2019; Provis & Bernal, 2014a). Nonetheless, the added level of complexity of those 

blends raises the need for development of a unified and systematic approach to mix-design.  

4 Conclusion 

In this work, a brief overview of geopolymer chemistry and of precursors-related challenges has 

been given. From the information presented, the following conclusions can be drawn: 

• The definition of geopolymers should be based on a commonly accepted testing rather than 

a calcium threshold which may not uphold for all alkali-activated materials 

• Geopolymer science has evolved significantly in the last decades and the better 

understanding of chemistry related to geopolymers has facilitated research in this area. 

However, intermediate steps in geopolymerization are still not fully understood and thus 

further studies are needed. 

• Drawbacks from the use of single precursors could be answered by the development of 

rigorous design for blended mixes. Success in this area is strongly dependent on the 

appropriate characterization of the reactivity of raw sources and on predicting the impact 

of their properties on the final geopolymer matrix. 

• Intermediate calcium content geopolymers/alkali-activated materials present great 

potential, notably in terms of durability, and should be the subject of more research
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